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� Present framework to assess
economic incentives of markets at
different timescales.

� Present studies for CHP and battery
systems using real CAISO price
signals.

� Found that 60–90% of revenue
opportunities come from the real-
time markets.

� Ancillary service provisions increase
revenues by 40–100%.
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Power grids coordinate a diverse set of energy systems (generators, loads, storage devices) to ensure that
supply and demands are matched at multiple timescales (from hours to milliseconds). Such coordination
is achieved through hierarchical market transactions. This work presents an optimization framework to
evaluate revenue opportunities provided by these multi-scale market hierarchies and to determine opti-
mal participation strategies for individual participants. The proposed framework models day-ahead and
real-time transactions of energy, ancillary services, and virtual bidding products provided by indepen-
dent system operators (ISOs). We apply the framework to a combined heat and power system and a
utility-scale battery to determine revenue potential from different market layers and products.
Analysis using real price signals for 2015 from the California ISO reveals that 60–90% of the total revenue
potential (obtained by participating in all markets) is provided by real-time markets alone (which operate
at fast timescales). Our studies also indicate that providing ancillary services (in addition to day-ahead
and real-time energy products) increases revenue potential by 40–100%, depending on the physical flex-
ibility of the technology. The proposed framework can be used to identify which market layers and prod-
ucts offer the greatest economic potential for different energy technologies. Our results also highlight
that existing techno-economic studies that focus exclusively on day-ahead energy markets (operating
at slower timescales) can dramatically undervalue dynamic flexibility.
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1. Introduction

Power grids coordinate a diverse set of energy systems (gener-
ators, loads, storage devices) to ensure that supply and demands
are matched at multiple timescales (from hours to milliseconds).
Such coordination is achieved through hierarchical (multi-scale)
market transactions. The proportion of transactions occurring at
different timescales is changing as more intermittent and non-
dispatchable power is injected into the system. For instance, wind
power introduces power injection fluctuations at high frequencies,
which require adjustments in fast real-time energy and ancillary
services markets (regulation) [1]. Automation architectures for a
broad spectrum of electricity generation and consumption systems
(e.g., manufacturing building) are currently being re-designed to
exploit incentives provided by faster and more volatile energy
markets. For example, the Alcoa Point Comfort Power Plant, which
is a utility plant that provides electricity and steam to the adjacent
aluminum manufacturing facility, re-optimizes its operations
every 15 min in response to electricity and natural gas price fluctu-
ations [2]. These new flexibility-oriented automation architectures
provide load flexibility to the power grid in exchange for monetary
payments or deferred costs. Similarly, large-scale battery systems
and building systems are becoming key providers of dynamic flex-
ibility to the power grid [3,4].
1 http://www.iaee.org/documents/denver/varela-salazar.pdf.
1.1. Electricity markets and demand response

Understanding the economic incentives provided by generation
and load flexibility requires careful consideration of wholesale
electricity market structures and diverse products. Fig. 1 shows
the multiscale control structure currently used to balance the
power grid. Resources can participate by buying/selling electrical
energy and/or providing ancillary services (regulation, reserves).
Fig. 2 shows time-varying prices from the California Independent
System Operator (CAISO) for three consecutive days. Energy is
transacted at three timescales: in the integrated forward market
(day-ahead market with 1-h intervals), in the fifteen minute mar-
ket, and through the real-time dispatch process (5-min intervals).
Table 1 lists the different products transacted at each timescale.
Histograms for energy prices at different markets are presented
in Fig. 3. As can be seen, prices are less volatile in the day-ahead
market and the average price is higher. In the real-time market
(FMM, RTD) prices are frequently negative and occasionally exceed
$150/MW h. Energy systems with fast dynamics (e.g., flywheels,
batteries) can exploit these fast price fluctuations.

Resources (i.e., generators and loads) provide addition flexibility
to the hierarchical grid control structure (Fig. 1) via regulation and
reserve ancillary service market products. Generators and loads
providing regulation capacity permit the Automatic Generator
Control (AGC) layer (run by the ISO or similar grid entity) to adjust
their power set-point with a specified range [5]. Depending on the
market region, the AGC layer updates load set-points every 2–15 s.
The regulation service provider is compensated both for the
amount of regulation capacity provided (a load flexible band is
offered) and the amount of mileage, which is the sum of the abso-
lute distance between consecutive load set points. Mileage calcula-
tions are illustrated in Fig. 5. Order 755 of the Federal Energy
Regulatory Commission (FERC) provides incentives to participants
capable of tracking fast changing load set-points. In California, reg-
ulation services are procured as two separate products, regulation
up and regulation down, depending on the direction of the flexibil-
ity band relative to the nominal set-point (from the corresponding
energy market). Spinning reserves support regulation service and
safeguard against unplanned outages and increased loads. Spin-
ning reserves are rarely dispatched and resources providing
reserves are compensated for providing flexibility/contingency.
As additional intermittent and non-dispatchable wind and solar
power is absorbed, balancing the power grid becomes more chal-
lenging due to high-frequency (minute) variations from these
sources. As such, requirements for ancillary services are expected
to grow. For example, regulation capacity requirements for Texas
are anticipated to increase by 10–15% if wind penetration increases
from 5000 MW to 15,000 MW [6]. In February 2016, CAISO approx-
imately doubled regulation capacity requirements to account for
non-dispatchable renewable sources. As consequence the market
price for regulation doubled, resulting in a combined quadrupling
of payments to some regulation providers [7]. Finally, reductions
in the supply of ancillary services are expected with the retirement
of coal-fired generators [8], creating additional opportunities for
flexible load providers.

Manufacturing facilities and other large electricity consumers
may also participate in electricity markets through Demand
Response (DR) programs by manipulating their loads and/or by
using on-site generators. DR is typically classified as dispatchable
and non-dispatchable, as shown in Fig. 4. For dispatchable DR, the
ISO directly controls the load (e.g., balancing authority sends new
set points through AGC system to regulation resources), whereas
non-dispatchable loads are coordinated through a variety of pricing
signals including real-time electricity markets, which are updated
every 5–15 min. In Texas, load resources provide 2400 MW of
energy and ancillary services, including half of the spinning reserve
capacity. To give an idea of the impact of manufacturing, around
1000 MW of this capacity is obtained from a single electrochemical
processing facility that provides regulation and other services.
Medium (10–50 MW each) and small (less than 10 MW) size indus-
trial/commercial facilities provide the remaining 820 MW and
550 MW of capacity, respectively [8]. The Alcoa facility in Warrick,
IN offers several ancillary services in markets run by the Midconti-
nent ISO. The aluminum smelter provides 70 MW of regulation
capacity, which is 15% of its average load (470 MW). This type of
operation represents a paradigm shift on the use of manufacturing
loads for ancillary services. The same plant also provides 75 MW of
interruptible load, which has been dispatched around 55 times per
year for an average length of 42 min [10,11]. Alcoa generates up to
120,000 $/day of additional revenue by participating in electricity mar-
kets, and has identified potential for 10% energy cost reductions
through more targeted operations [10]. Based on data from CAISO,
a system providing 10 MW of regulation capacity for every hour in
2015 would have received 500,000 $/year plus mileage payments.
Regulation capacity prices currently reach up to 59 $/MW and this
numbermight increase asmore renewable power is adopted.More-
over, shifting 10 MW of load during the 1% most extreme prices
(in the 97 to 1621 $/MW h range) in the CAISO real-time energy
market to the average price (30 $/MW h) would yield savings of
400,000 $/yr. The savings for large manufacturing facilities can
reachmillions of dollars per year. For instance, the pumping system
of an oil pipeline comprised of 50 pump units with 6500
horsepower electric motors has a load of 200 MW. Large refineries
in Texas have generation facilities of up to 500 MW and usually
have excess power capacity installed.1
1.2. Literature review

Diverse studies have analyzed market participation of a variety
of technologies such as combined heat and power (CHP) plants
[12–17], steel furnaces [18,19], cement plants [20–22,14], air sep-
aration units [23,24,22,25–27], electrochemical manufacturing
facilities [28], HVAC systems for large buildings [29,4,30–32], and

http://www.iaee.org/documents/denver/varela-salazar.pdf


Fig. 1. Multi-scale market-based control hierarchy for the power grid. Resources may participate via multiple ancillary service and energy products (shown as rectangles).
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manufacturing systems with thermal energy storage [33]. Most of
these studies, however, focus on industrial DR/market participa-
tion at scheduling and planning decision layers that consider
coarse (e.g., 1 h) time discretizations. Emphasis has been placed
on optimal planning under time-varying electricity prices
[20,21,19,34,22,16], although recent work considers providing
reserve capacity [35,26,36] and interruptible loads [37]. The
remainder of this paper argues that these previous analyses under-
estimate system flexibility and revenue opportunities provided by
regulation and real-time energy markets, which operate at fast
timescales (seconds and minutes). For instance, significant incen-
tives in regulation markets have been identified for large building
systems [29,4,32,31,38]. In particular, [38] compares two control
strategies for modulating the fan power consumption to provide
regulation at high frequencies (0.03–0.002 Hz) while not interfer-
ing with chiller operation. A similar idea can be applied to chemical
and other manufacturing facilities where one can exploit mechan-
ical equipment without compromising slower units. Study of
demand response from new industrial facilities is very timely as
recently a group of power systems experts called for additional
techno-economic analysis of alternate demand response sources
to better inform market incentives [8].

Many studies have also analyzed the economics of Energy
Storage Systems (ESS) such as flywheels [39,40], batteries
[39,41,3,42–45,40,46], pumped-hydro [39,41,46], compressed air
energy storage [39,46], concentrated solar power generators with
thermal energy storage and/or supplemental boiler [47–50], fuel
cells [51,41], andother technologies [39,52] interacting inwholesale
electricity markets. Approximately half of the reviewed studies
focus on only energy arbitrage in day-ahead (forward) markets
[39,51,53,54,47,52,50]. Several other papers consider simultaneous
sale of energy and ancillary services in the day-ahead market alone
[41,49,55,45,40] or analyze only regulation revenues [3,44]. Real-
time markets are considered in only five studies [39,56,48,57,46].
In [48], the authors determine that sufficiently volatile real-time
markets, such as those in Germany and West Texas, support the
installation of electric heaters to ‘‘charge” thermal storage systems
for concentrated solar power plants during low/negative prices. Bids
for energy and reserves from electric vehicle aggregators in day-
ahead markets are studied in [57] while real-time prices are only
considered to settle reserve dispatches. In [46], the authors compare
revenue opportunities for five ESS technologies, and find 37 to 141%
higher revenues in Nordic balancing (real-time) markets. The
authors, however, consider participation in one market or energy
service provision at a time and highlight the need formore sophisti-
cated market participation strategies. Similarly, [39] compares 14
ESS technologies in seven US markets using only real-time prices.
[56] analyzes the economics of hybrid energy systems (power cycle
plus additionalmanufacturing systems) in the context of electricity,
feedstock, and product (e.g., chemical) markets.

1.3. Key contributions and paper organization

In the context of the reviewed literature, this work addresses
the following specific questions:

1. What are the economic opportunities provided by energy and
ancillary service products offered at different timescales?

2. Which market layers and products offer the greatest economic
potential?

3. How do system-specific physical capacity and dynamic flexibility
aid participation in different layers and improve revenue
potential?

To answer these questions, we propose a general multi-scale
optimization framework to capture diverse revenue streams pro-
vided by wholesale electricity markets. Specifically, the framework
models day-ahead and real-time energy, ancillary services, and vir-
tual bidding products provided by ISOs in the United States. Using
the framework, we calculate the revenue potential of two energy
technologies from historical price signals for all of year 2015 and
make two key observations: (1) In California, 62–94% of the total
revenue potential is only accessible via real-time markets. (2) Pro-
viding ancillary services can boost revenue potential by 40–100%
(relative to energy-only market participation). These results stress
the importance of fast flexibility in energy systems and suggest
that previous studies that focus on only day-ahead markets and/
or energy products underestimate revenues.

The paper is structured as follows. Section 2 discusses electric-
ity market organization and products. Section 3 mathematically
describes market rules and presents the multi-scale optimization
framework. Sections 4 and 5 analyze revenue streams for a com-
bined heat and power (CHP) system and a utility-scale battery.
The paper closes in Section 6 with concluding remarks and direc-
tions of future work.

2. Electricity market organization

Wholesale electricity markets, including those operated by
CAISO, PJM, Midcontinent ISO, ISO New England, and New York



(a) Energy Prices

(b) Ancillary Services (Day-ahead Market)

(c) Ancillary Services (Real-time Market)

Fig. 2. Energy and ancillary service prices from Daggett, CA for January 1–3, 2015.
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ISO in the United States allow for energy transactions at multiple
timescales to ensure that supplies match demands at any moment
throughout the network. This requires careful coordination of
Table 1
Timescale-product mapping for CAISO markets.

Day-ahead market Real-time market

Integrated Forward
Market (IFM)

Fifteen Minute
Market (FMM)

Real-Time
Dispatch (RTD)

1 h 15 min 5 min

Energy U U U

Ancillary services
Regulation down U U –
Regulation up U U –
Spinning reserves U U –
Non-spin. reserves U U –
operational schedules for generators and loads while considering
transmission network limits, generator capacity limits, and ramp-
ing constraints. Markets normally follow a two-settlement system
in which a day-ahead market seeks to commit transactions based
on expected (forecasted) system performance while a real-time
market allows for corrections when the system deviates from
expected performance due to forecast errors or contingencies. Mar-
ket settlements set prices for multiple products and at different
times. The locational marginal price (LMP) reflects the marginal
cost of serving an additional unit of energy at a specified node in
the transmission system, typically with units $/MW h. This price
factors in three components: energy, transmission losses, and con-
gestion. Ancillary service marginal prices (ASMPs) are primarily
used in CAISO to compensate ancillary service awards, with addi-
tional mechanisms to recover opportunity costs and special pricing
rules for shortage situations. Although this manuscript focuses on
the structure of markets operated by CAISO, many of the concepts



(a) 1 p.m. to 3 p.m. (b) 5 p.m. to 7 p.m.

Fig. 3. Histogram of electricity prices for 2015 for a CAISO node near Daggett, CA. Probabilities calculated using a time-weighted average. The dashed lines mark the mean
prices for each market (DAM, FMM, RTM). Larger price variations are observed in the fast markets and higher average prices in the day-ahead (hourly) market and during the
evening.

Fig. 4. Classification of Demand Response (DR) modes. Adapted from Fig. 1 in [9].

Fig. 5. Illustration of regulation mileage, which is the sum of the ‘‘distance” traveled between AGC setpoint signals. Mileage is corrected with actual telemetry to prevent
resources from benefiting from under- or overresponse. Each ISO has specific formulas and mileage payment procedures for incentivizing accurate responses.
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are applicable to markets in other regions. See [58] for additional
background and [59] for a comparison of real-time market struc-
tures from around the world.

2.1. Day-ahead markets

The day-ahead market (DAM) seeks to schedule sufficient gen-
eration capacity and ancillary services to meet the forecasted
demand for the next day. As illustrated in Fig. 6, the CAISO DAM
consists of three processes. After bids are submitted (no later than
10 a.m. the day before), they are analyzed in the Market Power
Mitigation (MPM) process. Due to the physical limits of electricity
generation and transport (e.g., transmission and ramping con-
straints, electrical storage), electricity markets are more suscepti-
ble to manipulation by firms with substantial market power
compared to other competitive commodity markets [60]. The



Fig. 6. Structure and timeline of the day-ahead market (DAM) run by CAISO.
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MPM process thus seeks to detect and counteract actions inconsis-
tent with competitive markets.

Specifically forbidden practices include (i) withholding physical
capacity that would be bid in the absence of market power, (ii)
refusing to bid or making unjustifiably high bids to ensure a facility
will not be dispatched or to influence LMPs, (iii) increasing electric-
ity generation to cause or obtain benefits from transmission con-
straints, and (iv) submitting unjustifiably high start-up, bid or
minimum load costs, or misrepresenting physical operating capa-
bilities to influence uplift payments. Mitigation is accomplished
by solving a security constrained unit commitment (SCUC) prob-
lem and decomposing the congestion component of LMPs into
competitive and non-competitive parts. Bids with non-
competitive congestion components greater than zero are miti-
gated (i.e., adjusted in accordance with a complex price ceiling).
Virtual bids and bids from participating loads, demand response
resources and non-generators are considered in the MPM process
but not subject to mitigation.

The mitigated and unmitigated bids from the MPM are used as
inputs to the Integrated Forward Market (IFM), which seeks to
determine unit commitment, manage congestion, and establish
prices. Another SCUC problem is solved to clear supply bids against
bid-in demands and minimize total bid cost while considering
transmission limits and technical/operating constraints (e.g., min-
imum run times). Energy and ancillary service procurement is co-
optimized in the IFM, such that sufficient ancillary services are
awarded to cover 100% of the forecasted demand. The IFM pro-
duces a set of binding hourly day-ahead schedules and ancillary
service awards, including hourly LMPs and ASMPs. These results
are published no later than 1 p.m. the day before.

Next, in the Residual Unit Commitment (RUC) process, addi-
tional demand may be procured to ensure sufficient capacity is
committed to accommodate demand forecast errors. RUC capacity
bids are voluntary and are submitted in conjunction with energy
and ancillary bids for the IFM. Virtual RUC bids are not permitted.
In order to prevent over procurement in the RUC, CAISO anticipates
bids in the real-time market from intermittent resources (e.g., pho-
tovoltaics) using historical data.

2.2. Real-time markets

Real-time markets are used to mitigate discrepancies between
forecasted and actual demand, unplanned outages, and transmis-
sion and generator failures by adjusting energy and ancillary ser-
vice schedules and procuring additional capacity. The RTM
structure is more complex than that of the DAM, as shown in
Fig. 7. Energy and ancillary service bids must be submitted at least
75 min before the start of each trading hour. After the Market
Power Mitigation (MPM) process, the bids are used in the Hour
Ahead Scheduling Process (HASP) to establish binding inter-tie
schedules (links to transmission systems outside CAISO) and to
provide advisory prices and schedules. This advisory data informs
operational plans and bidding strategies for subsequent hours.
Every 15 min, the Real-Time Unit Commitment (RTUC) runs and
dispatches additional fast and short start resources. The results
are used by the Fifteen Minute Market (FMM) to establish binding
schedules and prices for energy (LMPs) and ancillary services
(ASMPs) for 15-min intervals. Once every hour the Short-Term
Unit Commitment process is run to dispatch additional short
and medium start resources. Finally, every 5 min, the Real-Time
Dispatch process schedules additional energy and sets 5-min
energy prices (LMPs). The FFM and RTD layers set real-time prices.

Real-time markets are implemented as intricate layers of opti-
mization problems. The RTUC solves a Security Constrained Unit
Commitment (SCUC) problem over a horizon of four to seven 15-
min intervals. Fig. 8 presents the timing of the RTUC processes.
One RTUC run is started every 15 min. The HASP corresponds to
the RTUC run started 7.5 min before the beginning of each trading
hour. The FMM is settled using results for the second interval of
each RTUC horizon. As such, FMM settlements are based on the
data available 37.5 min before each 15-min interval (see Fig. 8).
This structure introduces errors from lag, and necessitates a faster
layer; the RTD runs 7.5 min before the start of each 5 min interval,
and solves a Security Constrained Economic Dispatch (SCED) prob-
lem. It establishes binding energy prices and schedules for the next
interval and advisory information for subsequent intervals in the
trading hour. Medium start units are scheduled once each hour
in the STUC process, which solves a SCUC problem with a planning
horizon of approximately 5 h.

2.3. Energy settlements

Payment for energy is settled using the LMPs from the corre-
sponding market. Thus, energy procured in the IFM is settled using
LMPs from the IFM. Imbalance energy is the difference between
energy schedules from different markets. For example, if a resource
is scheduled to deliver energy via the IFM, but the schedule is mod-
ified in the FMM, the difference is known as FMM instructed imbal-
ance energy and is settled with the FMM LMPs. RTD instructed
imbalance energy is similarly defined and is settled with RTD LMPs.
This is important as the IFM schedule, which considers energy out-
put in constant 1-h intervals, does not consider ramping energy,
which is a form of imbalance energy. If a resource fails to meet
its scheduled energy production/consumption for unanticipated
reasons, the deviation is known as RTD uninstructed imbalance
energy, and is settled using RTD LMPs.



Fig. 7. Structure and timeline of the real-time markets (RTM) run by CAISO.

Fig. 8. Timeline for the Real-Time Unit Commitment (RTUC) process. Four different instances are shown. The black circles mark when each RTUC process starts, with time T
corresponding to the start of the reference trading hour. The long rectangles show the planning horizon used for each RTUC process. The shaded (green) regions mark the part
of each RTUC result used to settle the FMM (i.e., are financially binding). The HASP is a special instance of the RTUC, and corresponds to the run started before each hour. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3. Multi-scale optimization model

This section describes the components of the multi-scale opti-
mization framework that include time discretization, market prod-
ucts, general physical constraints, and operational logic. The
subsequent sections illustrate how to tie this general framework
to specific energy technologies.

3.1. Time discretization

Themulti-layered time discretization scheme illustrated in Fig. 9
captures product sales and purchases at multiple timescales. The
modeling framework is flexible in that it can capture an arbitrary
number of layers and time resolutions at each layer. For CAISO, level
0 denotes a day of operation, level 1 comprises one-hour time inter-
vals in the day-ahead market (i.e., N1 = 24), level 2 corresponds to
the fifteen-minute market (i.e., N2 ¼ 4), and level 3 contains five-
minute (real-time)market (N3 ¼ 3). It should be noted that the time
discretization currently used in CAISO is rather arbitrary and can
potentially change in the future as, for example, a day-aheadmarket
can inprincipleuse resolutionsof less thananhourand the real-time
market could use resolutions of ten minutes or less than 5 min.

Consider the sets of time intervals T ‘ :¼ f1; . . . ;N‘gwhere ‘ indi-
cates the market layer and ‘ 2 L :¼ f3;2;1;0g. Let Dt‘ denote the
length of the time interval in layer ‘ 2 L (units of hours). The lex-
icographic time set

T � :¼T jLj � � � ��T 2�T 1�T 0

¼fð1;1;1;1Þ;ð2;1;1;1Þ; . . . ;
ðN3;1;1;1Þ;ð1;2;1;1Þ; . . . ;ðN3;N2;1;1Þ; . . . ;ðN3;N2;N1;N0Þg;

ð3:1Þ
captures the hierarchical nature of the time discretization. Lexico-
graphic time sets for individual layers are similarly defined:
T �

3 :¼ T �; T �
2 :¼ T 2 � T 1 � T 0; T �

1 :¼ T 1 � T 0, and T �
0 ¼ T 0. Next,

consider a time instant t (corresponding to physical time) that is
compatible with the time interval of the fastest timescale. Such
instance t is defined by the tuple ði3; i2; i1; i0Þ and corresponds to
the nested indexes t�3ðtÞ ¼ t ¼ ði3; i2; i1; i0Þ; t�2ðtÞ ¼ði2; i1; i0Þ;
t�1ðtÞ ¼ ði1; i0Þ, and t�0ðtÞ ¼ i0. Thus t�3ðtÞ 2 T �

3; t�2ðtÞ 2 T �
2; t�1ðtÞ 2 T �

1,
and t�0ðtÞ 2 T �

0 for any t 2 T �
3. The notation t þ 1 is used to indicate

a forward (lexicographic) step in an element of the set T �
3 and we

use similar notation for the rest of the lexicographic sets. This
nested time discretization representation can be used for an arbi-
trary number of layers.

As previously discussed, in electricity markets the same product
(e.g., energy or ancillary services) can be sold or bought at different
market layers. A common character (e.g., E) is used to represent a
given product (e.g., energy) with the index indicating the corre-
sponding market layer. For instance, �Et�3ðtÞ corresponds to the
energy sales in the third market layer at time instant
t�3ðtÞ ¼ t 2 T �

3 while �Et�1ðtÞ corresponds to energy sales in the first
market layer at time interval t�1ðtÞ 2 T �

1. The proposed nested index
notation facilitates the expression of several quantities of interest.
For instance, the quantity

P
‘2L

�Et�
‘
ðtÞ represents the total energy sold

at time instant t at all market layers.
3.2. Products and net energy

Consider a generic energy system capable of selling and pur-
chasing energy and selling ancillary services at multiple time-
scales. Let �Et�

‘
ðtÞ and Et�

‘
ðtÞ represent the average power sold and



Fig. 9. Four-layer time discretization representation.
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purchased at market level ‘, respectively. Similarly, let
Aa;t�

‘
ðtÞ; a 2 A :¼ fs;n; rþ; r�g represent the ancillary service capac-

ity provided in the same market level for the spinning reserves
(s), non-spinning reserves (n), regulation up (rþ), and regulation
down (r�) ancillary services. The energy system is assumed to be

capable of satisfying onsite demand Êt�3ðtÞ; t 2 T �. Let Et�3ðtÞ represent
the average net power:

Et�3ðtÞ ¼ Êt�3ðtÞ þ
X
‘2L

�Et�
‘
ðtÞ � Et�

‘
ðtÞ

� �
; t 2 T �: ð3:2Þ

All of these quantities are normalized using the nameplate capac-

ity KE. Consequently, 0 6 At�
‘
ðtÞ; �Et�

‘
ðtÞ; Et�

‘
ðtÞ; Êt�

‘
ðtÞ 6 1. The bounds for

net energy depend on the technology specific physics:
0 6 Et�

‘
ðtÞ 6 1 for systems that only net produce electricity (e.g.,

conventional thermal generators) and �1 6 Et�
‘
ðtÞ 6 1 for other

energy systems capable of both producing and consuming electric-
ity (e.g., batteries, flywheels).

3.3. Revenues

Net energy revenues (RE) are given by the difference between
energy sales and purchases accumulated over all time intervals:

RE ¼ KE
X
t2T �

X
‘2L

Dt‘pE
t�
‘
ðtÞ

�Et�
‘
ðtÞ � ð1þ �ÞEt�

‘
ðtÞ

� �
; ð3:3Þ

where pE
t�
‘
ðtÞ represents the price for energy in market level ‘ during

time interval t�‘ ðtÞ. This assumes that the energy system receives no
external revenue for satisfying onsite electricity demand. In many
wholesale markets, including CAISO, the simultaneous sale and pur-
chase of energy is permitted. In fact, purchasing energy on one mar-
ket (e.g., day-ahead) and reselling it on another (e.g., real-time) at
the same time is a common practice known as virtual bidding (dis-
cussed later on). Because a single price is used for both energy sales
and purchases at each market level, it is possible for the solutions to
be degenerate (non-unique). This is prevented by modifying the
price of energy purchases by a factor � > 0. In this work, � ¼ 10�6.
Eq. (3.3) can be easily modified to accommodate wholesale markets
with separate energy prices for sales and purchases.

Net revenue for ancillary services, denoted byRA, is calculated
as:

RA ¼ KE
X
a2A

X
t2T �

X
‘2L

pA
a;t�

‘
ðtÞAa;t�

‘
ðtÞ

� �
; ð3:4Þ

where Aa;t�
‘
ðtÞ is the amount of ancillary service capacity for product

a sold into market level ‘ during timestep t�‘ ðtÞ. Regulation revenues
only include capacity payments, and it is assumed the mileage pay-
ments exactly offset the cost of tracking the regulation signal. In
CAISO, energy is transacted on three timescales (hour, 15 min,
5 min) whereas ancillary services are only procured on two time-
scales (hour, 15 min). Thus Aa;t�3ðtÞ ¼ 0; t 2 T � for energy systems
interacting with CAISO markets.

3.4. Ramping limits

The net power on all three levels between timesteps is bounded
by the ramp rate qE > 0:

�qEDt3 6 Et�3ðtÞ � Et�3ðt�1Þ 6 qEDt3; t 2 T �: ð3:5Þ

As expected, the larger qE is, the more dynamic flexibility the sys-
tem provides. Because t�3ðtÞ ¼ t holds, the above equation is equiv-
alent to:

�qEDt3 6 Et � Et�1 6 qEDt3; t 2 T �: ð3:6Þ
3.5. Ancillary service capacity

(Non)-spinning reserve capacity is restricted to be between 0
and 1. Regulation up and down capacity is asymmetric and
restricted by the bounds qmax

þ and qmax
� :

0 6 st�
‘
ðtÞ;nt�

‘
ðtÞ 6 1; ‘ 2 L; t 2 T �; ð3:7Þ

0 6 rþt�
‘
ðtÞ 6 qmax

þ ; ‘ 2 L; t 2 T �; ð3:8Þ

0 6 r�t�
‘
ðtÞ 6 qmax

� ; ‘ 2 L; t 2 T �: ð3:9Þ

The previous equations represent general physical constraints
that will limit transactions of energy and regulation products by
any market participant. The following constraints are specific to
certain types of participants.

3.6. Generating systems

For generators with significant start-up and shut-down times/
costs, it is necessary to model the operational mode. In CAISO, it
is permissible to simultaneously sell energy, regulation, and
reserves. Similarly, when the generator is spinning mode, it is per-
missible to sell both spinning and non-spinning reserves as long as
capacity is not double-counted. Under these rules, a generator may
operate in one of three modes: (i) generating, (ii) spinning, and (iii)
not spinning. The binary variables ye; ys and yn represent these
three modes, respectively. Such decisions are made on an hourly
basis:

yet�1ðtÞ; yst�1ðtÞ; ynt�1ðtÞ 2 f0;1g; t 2 T �: ð3:10Þ

When the generator is in generation mode, the market allows
the system to sell regulation capacity provided that the total regu-
lation capacity does not exceed qmax

reg :
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X
‘2L

rþt�
‘
ðtÞ þ r�t�

‘
ðtÞ

� �
6 qmax

reg yet�1ðtÞ; t 2 T �: ð3:11Þ

In CAISO, the ramp capability for 10 min limits both the total
regulation capacity and the sum of regulation up, spinning
reserves, and non-spinning reserves. Consequently,
qmax

reg ¼ qmax
þ ¼ qmax

� ¼ qE 10 min
60 min =h and the following constraint is

imposed:

X
‘2L

rþt�
‘
ðtÞ þ st�

‘
ðtÞ þ nt�

‘
ðtÞ

� �
6 qmax

reg ; t 2 T �: ð3:12Þ

Similarly, the maximum generation capacity may not be
exceeded, which prevents capacity double-counting. This is mod-
eled as:

Et�3ðtÞ þ
X
‘2L

rþt�
‘
ðtÞ þ st�

‘
ðtÞ þ nt�

‘
ðtÞ

� �
6 1; t 2 T �: ð3:13Þ

Let K represent the minimum operating capacity. If K > qEDt3,
then (3.5) must be relaxed to ensure that start-up is feasible. Recall
that t�1ðt�3ðtÞÞ ¼ t�1ðtÞ and define

zt�3ðtÞ :¼ qEDt3 þmaxðjt�1ðtÞ � t�1ðt � 1Þj;1Þ
� ð1� qEDt3Þð2� yet�1ðtÞ � yet�1ðt�1ÞÞ: ð3:14Þ

Thus (3.5) can be relaxed using the constraint:

�zt�3ðtÞ 6 Et�3ðtÞ � Et�3ðt�1Þ 6 zt�3ðtÞ; t 2 T �: ð3:15Þ

Let hr represent the fraction of onsite demand that may be used
for regulation. While the system is in generation mode, the net gen-
eration must be greater than K plus R (the amount of awarded reg-
ulation down capacity not covered by onsite demand):

Rt�3ðtÞ P 0; Rt�3ðtÞ P
X
‘2L

r�t�
‘
ðtÞ

 !
� hr Êt�3ðtÞ; t 2 T �; ð3:16Þ
Et�3ðtÞ P KEyet�1ðtÞ þ Rt�3ðtÞ; t 2 T �: ð3:17Þ

When (hr ¼ 1), the onsite demand is completely flexible and its
entire capacity may be used for regulation down. Regulation up
capacity is restricted to the amount of energy sales plus the
amount of regulation-suitable onsite demand:

hr Êt�3ðtÞ þ
X
‘2L

�Et�
‘
ðtÞ P

X
‘2L

rþt�
‘
ðtÞ; t 2 T �: ð3:18Þ

Spinning reserve sales are permitted in modes i and ii:

X
‘2L

st�
‘
ðtÞ 6 yet�1ðtÞ þ yst�1ðtÞ; t 2 T �: ð3:19Þ

Non-spinning reserves sales are permitted in all three modes:

X
‘2L

nt�
‘
ðtÞ 6 yet�1ðtÞ þ yst�1ðtÞ þ ynt�1ðtÞ; t 2 T �: ð3:20Þ

Finally, only one mode of operation is permitted at a given time:

yet�1ðtÞ þ yst�1ðtÞ þ ynt�1ðtÞ 6 1; t 2 T �: ð3:21Þ

The use of binary variables in the proposed model is necessary
to capture the logic of market participation. For example, if a gen-
erator is currently operating at its minimum capacity then it can-
not offer regulation down capacity. In addition, binary variables
can be used with other mode detailed models to restrict on/off
schedules (e.g., enforce minimum up and down times), such as
[61,62,54].
3.7. Non-generating systems

Systems that do not generate electricity (e.g., batteries, fly-
wheels, or buildings) are not subjected to the constraints of Sec-
tion 3.6. With sufficient capacity, these systems are capable of
providing regulation with zero net energy sales. For these systems,
the following constraints replace (3.10)–(3.21), and are derived by
setting ye ¼ 1 and K ¼ �1.X
‘2L

rþt�
‘
ðtÞ þ r�t�

‘
ðtÞ

� �
6 qmax

reg ; t 2 T � ð3:22Þ

X
‘2L

rþt�
‘
ðtÞ þ st�

‘
ðtÞ þ nt�

‘
ðtÞ

� �
6 qmax

reg ; t 2 T � ð3:23Þ

Rt�3ðtÞ � Et�3ðtÞ 6 1; t 2 T � ð3:24Þ

Rt�3ðtÞ P 0; Rt�3ðtÞ P
X
‘2L

r�t�
‘
ðtÞ

 !
� hrÊt�3ðtÞ; t 2 T � ð3:25Þ

Et�3ðtÞ þ
X
‘2L

rþt�
‘
ðtÞ þ st�

‘
ðtÞ þ nt�

‘
ðtÞ

� �
6 1; t 2 T �: ð3:26Þ

The proposed model allows non-generating systems to buy and
sell energy while simultaneously providing ancillary services. The
model does not consider special designations available in some
wholesale markets. For example, in CAISO, energy storage systems
may choose to participate in Regulation Energy Management. Such
resources are restricted to only provide regulation, but buy and sell
the energy necessary for regulation on the real-time market. The
market allows them to bid as regulation capacity (MW) up to four
times the energy (MW h) they can curtail or discharge in 15 min.

3.8. Virtual bidding

Virtual bidding is an important financial mechanism in which
energy is purchased in one market (either the IFM or FMM) and
sold in another market. With a virtual supply award, the bidding
entity is paid for energy at the IFM LMP but is charged the cost
of energy per the FMM LMP (averaged for the hour). Similarly, with
a virtual demand award, the bidder is charged the LMP from the
IFM and paid using the LMP from the FMM. These bids are called
virtual because they do not involve any physical equipment. In
our framework, virtual bids can be modeled concisely as:

�Et�1ðtÞ ¼ Et�2ðtÞ; t 2 T � ð3:27Þ

Et�1ðtÞ ¼
�Et�2ðtÞ; t 2 T � ð3:28Þ

�Et�3ðtÞ ¼ Et�3ðtÞ ¼ 0; t 2 T �: ð3:29Þ

We emphasize that the proposed multi-layered discretization
model facilitates the imposition of this type of virtual bidding logic,
in which certain products are simply transferred from one time
scale to another. Virtual bids are only applicable to energy prod-
ucts and do not involve physical equipment. Consequently, con-
straints (3.2) and (3.4)–(3.26) are not considered in this case.

4. Case study: combined heat and power system

Combined heat and power (CHP) systems provide electrical and
heat energy to buildings or manufacturing facilities. Some CHP sys-
tems do not interact directly with the ISO market but instead pur-
chase power directly from a utility company, load aggregator, or
other entity. Regardless of the connection mechanism, the
exchange of electrical energy with the power grid helps synchro-



Fig. 10. Overall energy efficiency for CHP system based on the steam and electricity
output. Operation is restricted to black polygon.
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nize steam and electricity demands (the time demand profiles of
these two products), which are usually out of phase [63]. This first
case study quantifies the revenue opportunities from CHP systems
interacting directly with the ISO and assess how physical flexibility
benefits CHP systems. This is done by coupling the equations from
Section 2 (market rules) with mathematical models for CHP system
physics. Out of simplicity, special (optional) CAISO rules to ensure
steam availability (via must-run levels) and accommodate distinct
operating modes (via multi-stage generation classifications) are
ignored and the CHP system is treated as a standard thermal
generator.

The remainder of this subsection develops aminimalistic mathe-
matical model to represent the physical behavior and flexibility of a
CHP system. The proposed framework is general purpose, and com-
patible with more sophisticated models, such as those in [16,64].

Let f t�3ðtÞ; ŝt�3ðtÞ, and Êt�3ðtÞ represent fuel usage, delivered onsite

steam, and delivered onsite electricity at time t 2 T �. Furthermore,
steam and electricity variables are scaled by their nameplate
capacities Ksteam and KE, respectively:

0 6 f t�3ðtÞ; 0 6 ŝt�3ðtÞ 6 1; 0 6 Êt�3ðtÞ 6 1; t 2 T �: ð4:30Þ

Assume that the energy efficiency of the CHP unit is character-
ized by three parameters: maximum steam efficiency (gsteam), max-
imum electrical efficiency (gE), and maximum overall energy
efficiency (gtotal). Using these parameters, the fuel usage is bounded
as follows:

f t�3ðtÞ P
Ksteamŝt�3ðtÞ þKEEt�3ðtÞ

gtotal
; t 2 T � ð4:31Þ

f t�3ðtÞ P
Ksteamŝt�3ðtÞ
gsteam

; t 2 T � ð4:32Þ

f t�3ðtÞ P
KEEt�3ðtÞ

gE
; t 2 T �: ð4:33Þ

Assume that the operating range of the CHP unit (feasible pair-
ing of steam and electricity generation levels) may be character-
ized by a polyhedral region:

aŝt�3ðtÞ þ bEt�3ðtÞ P c; t 2 T �; ð4:34Þ

where a; b and c characterize the edges of the polyhedron. Fig. 10
shows the assumed operating range overlayed onto the overall
energy efficiency for gsteam ¼ 45%; gE ¼ 40%, and gtotal ¼ 70%.

Assume that the steam generation ramp rate is bounded by
qsteam:

�Dt3qsteam 6 ŝt�3ðtÞ � ŝt�3ðt�1Þ 6 Dt3qsteam; t 2 T �: ð4:35Þ

Let /s
t�3ðtÞ

and /e
t�3ðtÞ

represent the on-site steam and electrical

demands at time t�3ðtÞ that the CHP system seeks to satisfy. Fur-
thermore, let hs and he represent the fraction of these demands that
are flexible, defined as:

/t�3ðtÞ
ð1� heÞ 6 Êt�3ðtÞ 6 /t�3ðtÞ

ð1þ heÞ; t 2 T �; ð4:36Þ

rt�3ðtÞð1� hsÞ 6 ŝt�3ðtÞ 6 rt�3ðtÞð1þ hsÞ; t 2 T �; ð4:37Þ

while satisfying the full demands for each day i0 2 T �
0:X

t2T :t�0ðtÞ¼i0

Êt�3ðtÞ � /t�3ðtÞ

� �
¼ 0; i0 2 T �

0; ð4:38Þ

X
t2T :t�0ðtÞ¼i0

ŝt�3ðtÞ � rt�3ðtÞ

� �
¼ 0; i0 2 T �

0: ð4:39Þ
The fuel costs are calculated as:

Cfuel ¼ pfuelDt3
X
t2T �

f t�3ðtÞ; ð4:40Þ

where the price of fuel (pfuel) is assumed to be constant.
The operating policy of the CHP system is optimized to mini-

mize the net operating costs Cfuel � RE � RA, subject to the market
rules (3.2)–(3.21), and system model (4.30)–(4.40). Real CAISO set-
tlement prices for all of the year 2015 are used in the analysis. The
nominal time demand profiles shown in Fig. 11 is assumed for each
day, with the CHP system always running (yet�1ðtÞ ¼ 1 and

yst�1ðtÞ ¼ ynt�1ðtÞ ¼ 0). The resulting linear programming problems

include up to 200,000 equality constraints, 1.8 million inequality
constraints, and 1 million bounded continuous variables for an
entire year. Nevertheless, Gurobi solved each problem instance in
a few minutes and on a standard workstation. In the context of
real-time control and bidding, a much shorter horizon (e.g., days)
would likely be considered, reducing the problem size by a factor
of 100.

The remaining subsections quantify the benefits of market par-
ticipation with respect to net operating costs and consider the
impact of fuel price, demand flexibility, and different restrictions
of market participation. Unless otherwise noted, let p f ¼ 4 $/MBtu,
hs ¼ he ¼ hr ¼ 0; KE ¼ Ksteam ¼ 1 MW, qsteam ¼ 1:0 (100% per hour),
qE ¼ 1:8 (3% per minute as is typical for Rankine cycles [65]), pro-

hibit energy purchases Et�
‘
ðtÞ ¼ 0

� �
, and permit simultaneous par-

ticipation in day-ahead and real-time markets.

4.1. Fuel price sensitivity

The first study quantifies the sensitivity of net operating costs
to fuel price variability under four different market participation
schemes: no market participation, sales of energy, sales of energy
and regulation, and sales of all products. With low fuel prices
(3.0 $/MBtu), market participation reduces the net operating costs
by 49,000 $/year (for 1 MW steam and electricity capacity), or
59.1% relative to no market participation, as shown in Fig. 12. This
is realized by revenues of 89,400 $/year from market participation
and 40,400 $/year additional fuel costs. Thus 74% of the net savings
are realizable with only energy sales. Providing spinning reserves in
addition to regulation and energy had a negligible impact on net
operating costs. With high fuel prices (7.0 $/MBtu), the net operat-
ing cost savings are more modest, 25,700 $/year, with 40,000 $/



Fig. 11. Nominal steam and electricity demand profiles for CHP system.

Fig. 12. Net CHP operating costs as a function of fuel price and market participation
mode. Around 4.9–30.6% operating cost reductions are obtained through energy
sales using excess capacity. Around 16.3–59.1% cost reductions are obtained
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year in market revenues offsetting the 14,300 $/year increase in
fuel consumption. Approximately one-third of these savings are
from energy sales, and the remainder is from regulation capacity.
Interestingly, the incremental benefit from regulation sales is
approximately 12,000 $/year and is insensitive to fuel price.

Fig. 13 shows the operating profiles for January 1st–3rd and
highlights the difference between the different market participa-
tion modes. The yellow2 (dotted) region correspond to electricity
generation used to meet on-site electricity demand. The purple
(crossed) regions correspond to energy sold in the market. Regula-
tion down (blue region) overlaps energy production. Regulation up,
spinning reserves and non-spinning reserves are shown in red, green
and black, respectively. The solid black line shows the nominal
power output level. As can be seen, profiles follow non-trivial pat-
terns, highlighting the need for systematic optimization. In particu-
lar, note that the system capacity is almost fully exploited under full
market participation by providing all types of products. In other
words, capacity is severely wasted under no or partial participation.
The corresponding prices for these three days are shown in Fig. 2.
through sales of energy and ancillary services.
4.2. Revenues from different markets

The next study examines the distribution of revenues obtained
from different timescales by comparing three market participation
schemes: day-ahead (DAM) only, real-time (RTM) only, and full
participation. Fig. 14 shows both the absolute fuel costs and rev-
enues for combinations of market participation schemes and the
four previously considered market schemes (i.e., combinations of
products). Interestingly, with only energy sales in both DAM and
RTM, approximately one-third of the revenues comes from each time-
scale. When ancillary services are considered, one-quarter of the
revenues are from the 1-h (IFM) and 5-min (RTD) timescales, and
the remaining half are from the 15-min timescale (FMM). When
participation is restricted to the RTM only, one-half to two-thirds
of the revenue come from the 15-min timescale (FMM). Table 2
shows the reduction in net operating costs for these combinations
of market participation schemes and operating modes. The greatest
savings are obtained by participating in markets at all timescales.
Most notably, restricting participation to only DAM limits cost savings
to only 34–35% of those available from full market participation. On
the other hand, participating in only the RTM limits cost savings
to 86–91% of the maximum available savings. Thus the majority
2 For interpretation of color in ‘Fig. 13’, the reader is referred to the web version of
this article.
of the economic opportunities are obtained at faster timescales (5–
15 min). Table 2 also shows that the cost savings for simultaneous
ancillary services and energy participation are 228% higher than
those obtained with energy participation (savings increase from
25,800 $/year to 57,900 $/year).

4.3. Benefits of demand flexibility

The previous results assume that onsite electricity and steam
demands are completely inflexible (are followed exactly by the
CHP system). Consequently, the CHP system can only use the resid-
ual capacity to participate in the markets. However, many indus-
trial utility systems can provide three additional forms of
flexibility: steam (represented by factor hs), electrical demands
(he), and additional regulation capacity (hr). The dominant time
constants in many industrial unit operations (e.g., separation sys-
tems) are on the order of hours. As such, these systems may be
insensitive to small steam supply fluctuations on the order of sec-
onds or minutes. Headers in steam distribution systems also act as
small storage volumes and can help attenuate high frequency vari-
ations. Both steam and electrical demand flexibility may also be
available from adjustments in production schedules. Some loads
for electrical headers and mechanical equipment (e.g., pumps,
fans) may also be adjusted at high frequency to provide regulation



Fig. 13. Comparison of operating policy for January 1–3, 2015 assuming 4.0 $/MBtu fuel price.

Fig. 14. Absolute fuel costs (negative) and revenues from markets, separated by
market participation and product, assuming fuel price of 4.0 $/MBtu.
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services without compromising the performance of the other units
at slower timescales.

These flexibility modes are investigated by individually varying
hs; he, and hr between 0% and 10% and resolving the operational
optimization problem for different market interaction schemes.
The total on-site daily steam and electricity demands are still sat-
isfied (demand profiles are only shifted in time). For all three
Table 2
Comparison of net operating cost savings for different market participation and operating m
the net savings as a percentage of operating costs with no participation. The second line o
markets for each operating mode. This reveals the consequence of restricting market part

DAM + RTM

Energy only 25.8 k$/year (16.3%)
100%

Energy & regulation 57.9 k$/year (36.7%)
100%

All products 58.8 k$/year (37.3%)
100%
modes of flexibility, the relationship between net operating cost
and flexibility parameter was found to be linear. The slopes signify
the value of flexibility, and are reported in Table 3. Market participa-
tion increases the value of flexibility by a factor of three to five relative
to no market participation. This translates to additional costs savings
of +1.4% to +3.5% by moving from 0% to 10% flexibility.

The benefits of flexibility in CHP systems are derived from com-
plex trade-offs between system efficiency and market opportuni-
ties. In particular demand flexibility allows synchronization of on-
site steam and electricity demands, which are often out of phase.
Without market participation, steam (hs) and electrical demand
flexibility (he) increase overall energy efficiency from 62.7% to
63.1–63.4%, as shown in Table 4. Increased energy efficiencies
translate to fuel conservation and operating cost savings. In con-
trast, overall energy efficiency with market participation is approx-
imately 2%-points lower. These trends are explained through
Fig. 15, which are histograms showing the frequency of operation
in the steam-electricity space. Even without market participation,
exploiting steam demand flexibility allows the utility system to
operate in more efficient regions (by synchronizing steam and
electricity loads). With market participation, on the other hand,
operation is shifted towards generating more electricity and
exploiting excess capacity, even if this comes at the expense of less
system efficiency (e.g., more fuel use). This is because, at the avail-
able CAISO market and fuel prices, selling additional energy out-
weighs less efficient operations. Increasing hs from 0% to 10%
allows for more energy to be sold during higher prices. This has
three consequences: (i) average energy selling price increases by
ode combinations (relative to no market participation). Numbers in parenthesis show
f each entry gives the fraction of available net savings relative to participation in all
icipation to either DAM or RTM timescales only.

DAM only RTM only

8.7 k$/year (5.6%) 23.5 k$/year (14.9%)
34 % 91%

20.2 k$/year (12.8%) 50.6 k$/year (31.9%)
35 % 87%

20.7 k$/year (13.1%) 50.4 k$/year (32.0%)
35% 86%



Table 3
Value for different flexibility modes and different market participation schemes in
thousands of dollars per % flexibility per year.

Flexibility mode No markets Energy only All products

Steam (hs) �0.135 �0.352 �0.346
Electrical (he) �0.133 �0.517 �0.628
Regulation (hr) 0 0 �0.225

Table 4
Impact of onsite demand flexibility on efficiency under market participation schemes.

Market participation hs ¼ 0% hs ¼ 10% hs ¼ 0%
he ¼ 0% he ¼ 0% he ¼ 10%

None 62.7% 63.4% 63.1%
Energy only 60.1% 60.8% 60.2%
Energy & regulation 59.9% 60.6% 59.7%
All products 59.9% 60.6% 59.7%

A.W. Dowling et al. / Applied Energy 190 (2017) 147–164 159
2 $/MW h, (ii) total energy sales decrease by 20–30 MW h (2–3%),
and (iii) overall energy efficiency increases by 0.7%-points. Thus
exploiting system flexibility and multi-scale markets provides sig-
nificant economic incentives.

To further explore the trade-offs between steam and electricity
generation, market prices and efficiency, a full flexibility case with
hs ¼ 100% is considered. The delivered onsite steam and demand
profiles as well as energy sales for three days are shown in
Fig. 15. Distribution of operating points i
Fig. 16. The six spikes in energy sales, located during hours (i) 0–
9, (ii) 18–22, (iii) 27–33, (iv) 42–49, (v) 54–58, and (vi) 65–72, all
correspond with periods of high energy prices (Fig. 2a). At these
times, steam production is increased (relative to the reference
case) to synchronize with increased electricity generation in order
to operate in a higher efficiency region (Fig. 10). Similarly, during
time periods with low energy prices little or no electricity is sold
to the market and steam production is decreased. Fig. 16 indicates
that a majority of energy is sold in the real-time time markets,
which reflects the price trends see in Fig. 2a. From the steam and
demand profiles it is clear that the system commands fast varia-
tions in steam capacity in order to exploit real-time market signals.
Navigating these complex trade-offs between steam and electricity
onsite demands, efficiency, and multi-scale price signals is virtu-
ally impossible without a systematic optimization framework.

4.4. CHP case study conclusions

This analysis reveals substantial opportunities for operating
cost reductions (in the range of 16.3–59.1%) via market participa-
tion at all timescales. Interestingly, the majority of these economic
opportunities are provided by real-time markets, which are neglected
in most studies available in the literature. Exploiting onsite
demand flexibility further improves savings, with electrical
demand flexibility offering the greatest potential. All of these cost
savings are realized through strategically manipulating the steam
n steam-electricity generation space.



Fig. 16. (Top) Steam and electricity onsite demand profiles for January 1–3. The dashed line red lines show the reference steam demand. (Bottom) Sold power generation
capacity (MW/MW, scaled by KE) distinguished by market. The shaded (purple) area is energy (MW h/MW, scaled by KE). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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and electricity production schedule in response to complex multi-
layer energy and ancillary price signals and by operating under
regions of higher efficiency.
5. Case study: battery storage system

The second case study considers the participation of a simple
battery storage system in CAISO markets. The evolution of the bat-
tery state of charge (S) is modeled as follows:

St�3ðtÞ ¼ St�3ðt�1Þ þ gþDt3
X
‘2L

Et�
‘
ðtÞ

 !

� Dt3
g� Êt�3ðtÞ þ

X
‘2L

�Et�
‘
ðtÞ

 !
; t 2 T � ð5:41Þ
0 6 St�3ðtÞ 6 S; t 2 T �; ð5:42Þ

where gþ and g� are the charge and discharge efficiencies, respec-
tively, S0 is the initial storage level and final storage level imposed
at the end of each night, and S is the storage capacity. The following
constraints are used to ensure sufficient storage capacity to accom-
modate regulation sales:

St�3ðtÞ þ gþDt3
X
‘2L

r�t�
‘
ðtÞ 6 S; t 2 T �; ð5:43Þ
St�3ðtÞ �
Dt3
g�

X
‘2L

rþt�
‘
ðtÞ P 0; t 2 T �: ð5:44Þ

Net market revenue is maximized by manipulating the amount
of energy purchased, energy sold, and ancillary service capacity
provided in the three CAISO market layers subject to the market
model given by constraints (3.2)–(3.9) and (3.22)–(3.26), and the
battery state of charge model given by (5.41)–(5.44). The parame-
ter values g� ¼ 95%; gþ ¼ 95%; KE ¼ 1 MW (charge/discharge
capacity), and S ¼ 1 MW h (energy storage capacity) are assumed.
Table 5 presents the revenue estimates for the battery system
under different operating policy restrictions. Performing only
energy arbitrage in all three market layers yields 139,100 $/year
in net revenue. Adding ancillary services participation increases
net revenues to 199,600 $/year (44% increase). Interestingly,
restricting participation to only the day-ahead market (IFM)
reduces net revenues substantially: 10,500 $/year (energy only)
and 72,800 $/year (energy and ancillary services). Thus with only
DAM participation, also providing ancillary services increases rev-
enues by 600% relative to only energy arbitrage. These results also
highlight the importance of studying revenues available at multi-
ple market layers, especially at fast timescales. In particular, most
previous studies for batteries only estimate revenues using day-
ahead market prices [3,40,45,41,53,57], and thus miss important
economic opportunities.

Table 6 examines the total energy transactions (sales and pur-
chases) and average prices under six operating modes and market
participation schemes. The difference between sale and purchase
prices are greatest for the fastest market layers. For the RTD layer
(5-min intervals, fastest timescale), the average price difference
ranges from 39.5 to 53.2 $/MW h, whereas the average price differ-
ence for the IFM layer (1-h intervals, slowest timescale) ranges
from 6.3 to 19.3 $/MW h. This is due to both lower purchase prices
and higher sale prices at the faster timescales. Interestingly, with
participation in multiple timescales, the dominant trend is to pur-
chase energy in the RTD layer and resell it in the slower layers (IFM
and FMM). A likely source of these opportunities is the slow
dynamics of large thermal generators. For example, the RTD is used
to settle deviations between instructed and actual electricity gen-
eration amounts from slower timescales due to physical ramping
limitations. Because battery systems have much faster dynamics,
they are capable of exploiting opportunities in the RTD (fastest
market layer). In contrast, virtual bids are restricted to the IFM
(day-ahead) and FMM (real-time) only (as required by CAISO mar-
ket rules). As shown in Tables 5 and 6, strategic virtual bidding
(capped at 1 MW for consistency) produces seven times more revenue
than performing energy arbitrage in the day-ahead market, but only
34–48% of the revenue available from participation in multiple market



Table 5
Revenues for different market participation schemes and operating mode combina-
tions (relative to no market participation). Percentages reflect the fraction of available
revenue from participation in both the DAM and RTM.

DAM + RTM DAM only RTM only

Energy only 139.1 k$/year 10.5 k$/year 115.0 k$/year
100% 8 % 83%

Energy & regulation 199.6 k$/year 72.8 k$/year 141.8 k$/year
100% 36 % 71%

All products 199.6 k$/year 72.8 k$/year 141.8 k$/year
100% 36% 71%

Virtual bidding 67.1 k$/year
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layers. Again, this is because virtual bids cannot exploit revenue
opportunities in the faster market layer (RTD). This study thus
highlights revenue opportunities for electricity storage systems
from markets at faster timescales, and demonstrates the utility
and general applicability of the proposed market participation
model. Table 5 also shows that the revenues for simultaneous
ancillary services and energy participation are 43% higher than
those obtained with energy participation (revenue increases from
139,100 $/year to 199,600 $/year). This, again, illustrates how the
proposed framework can be used to identify which market layers
and products offer the greatest economic potential.
6. Conclusions and future work

This paper presents an optimization framework that captures
transactions of different products and at different timescales
between market participants and the independent system opera-
tor. We use real data from CAISO to analyze the interplay between
dynamic flexibility (dictated by system physics and constraints)
and market revenue potentials for CHP and battery energy storage
systems. For both technologies, we find that a large fraction of rev-
enue opportunities are provided by real-time markets (the fastest
timescales). We also demonstrate that ancillary services markets
in CAISO provide significant economic potential. Our results high-
Table 6
Optimal energy sales and purchases for 1 MW (charge/discharge), 1 MW h (energy storag
timescale.

Integrated forward market

Sold Purchased Sold

Energy only
DAM + RTM 3.16 GW h 1.17 GW h 1.94 G

34.3 $/MW h 26.6 $/MW h 44.3 $/M

DAM only 0.62 GW h 0.69 GW h –
41.5 $/MW h 22.3 $/MW h –

RTM only – – 2.74 G
– – 38.2 $/M

All products
DAM + RTM 2.86 GW h 1.18 GW h 1.81 G

33.5 $/MW h 27.2 $/MW h 38.9 $/M

DAM only 0.55 GW h 0.61 GW h –
39.0 $/MW h 24.5 $/MW h –

RTM only – – 2.64 G
– – 34.3 $/M

Virtual bidding 5.2 GW h 3.5 GW h 3.5 GW
32.4 $/MW h 29.6 $/MW h 37.2 $/M
light that existing techno-economic studies that focus exclusively
on day-ahead energy markets (operating at slower timescales)
can dramatically undervalue dynamic flexibility. The findings of
this paper prompt three areas of future work.

6.1. Uncertainty and real-time control

This paper assumes perfect information of energy prices and
thus estimates the maximum available revenue opportunities from
historical market data. In reality, energy system operators must
consider risk from market prices and input ‘‘fuel availability” (nat-
ural gas availability under constrained distribution systems, solar
or wind inputs for hybrid systems, etc.) when bidding into markets.
Several studies previously classify the impact of forecasting error
on market revenues [56,66,52]. Similarly, another group of studies
proposes market participation strategies that explicitly consider
risk for single timescale and/or single product contexts
[57,62,67–70]. The key challenge is extending forecasting and
robust market participation strategies to the full market participa-
tion context and characterizing the trade-offs between risk and
revenue from different time-scales and products. Similarly, the
proposed framework can be used as a basis for economic model
predictive control strategies for systems participating in multi-
scale energy markets.

6.2. Design of flexible energy systems

This paper demonstrates that current (year 2015) market data
strongly incentivizes the design of energy systems with high
dynamic flexibility (that can be monetized in the real-time mar-
ket). As future work, we propose extending the framework to
co-optimize market participation and design decisions (e.g., sub-
system selection and sizing, etc.). Several recent studies, for
instance, have focused on the design of flexible chemical manufac-
turing systems for operation under time-varying energy prices
[23,71,25,27]. Our analysis informs these efforts by establishing
an explicit link between dynamic flexibility at different timescale
and revenue opportunities. Moreover, our framework can identify
the critical physical constraints that limit revenue opportunities,
e) battery operating in CAISO market for 2015. Average prices are reported for each

Fifteen minute market Real time dispatch

Purchased Sold Purchased

W h 1.80 GW h 1.22 GW h 4.03 GW h
W h 20.3 $/MW h 71.9 $/MW h 18.7 $/MW h

– – –
– – –

W h 1.43 GW h 1.45 GW h 3.22 GW h
W h 19.0 $/MW h 63.2 $/MW h 16.9 $/MW h

W h 1.66 GW h 1.27 GW h 3.75 GW h
W h 21.1 $/MW h 67.1 $/MW h 19.1 $/MW h

– – –
– – –

W h 1.47 GW h 1.60 GW h 3.23 GW h
W h 21.8 $/MW h 58.1 $/MW h 18.6 $/MW h

h 5.2 GW h – –
W h 24.6 $/MW h – –
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providing a systematic methodology to design flexible manufac-
turing systems.

6.3. Energy infrastructures and public policy

The proposed framework offers a data-analytics tool to uncover
the economic incentives embedded in market price data. This can
help policy-makers understand if current markets are meeting pol-
icy goals (e.g., renewable adoption). With additional infrastructure
models, the proposed framework can analyze new renewable inte-
gration, coupled infrastructures (e.g., natural gas and electricity
markets), or new market rules from the context of investors/sys-
tem owners [72,73]. Moreover, the framework offers alternate
metrics besides the defacto standard, levelized cost of electricity
(which ignores all time-varying effects), to more holistically com-
pare energy technologies and guide research investments [74,75].
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Appendix A. Nomenclature

A.1. Parameters
Symbol
 Description
 Units
Dt‘
 Timestep at level ‘
 [h]

�
 Small number (10�6)
 [–]
pA
a;t�‘ ðtÞ
Price for ancillary service a 2 A at level
l 2 L
$/(MW �
[h])
pE
t�‘ ðtÞ
Price for energy at level l 2 L
 $/(MW �
[h])
qmax
reg
 Maximum total regulation
 [–]⁄
qmax
þ
 Maximum up regulation
 [–]⁄
qmax
�
 Maximum down regulation
 [–]⁄
qE
 Maximum ramp rate for electricity
 1⁄/[h]

qsteam
 Maximum ramp rate for steam
 1y/[h]

K
 Minimum operation capacity (electricity

generation)

MW/MW
KE
 Nameplate electricity generation capacity
 MW
Ksteam
 Nameplate steam generation capacity
 MW

gþ
 Battery charge efficiency
 [–]

g�
 Battery discharge efficiency
 [–]

gtotal
 Maximum overall utility (CHP) system

efficiency

[–]
gE
 Maximum fuel to electrical energy
efficiency
[–]
gsteam
 Maximum fuel to steam energy efficiency
 [–]

/t�3ðtÞ
 Electricity demand at time t 2 T �
 [–]⁄
rt�3ðtÞ
 Steam demand at time t 2 T �
 [–]y
S
 Maximum battery capacity
 [–]⁄
he
 Flexibility fraction for onsite electrical
demand
[–]
hr
 Fraction of onsite electrical demand that
may be used for reg.
[–]
hs
 Flexibility fraction for onsite steam
demand
[–]
A.2. Sets
Set
 Description
A :¼ fs; n; rþ; r�g
 Ancillary Services

L :¼ f3;2;1;0g
 Market layers

T ‘ :¼ f1; . . . ;N‘g
 Set of time steps in timescale ‘
T �
‘
 Nested time for timescales ‘ through 0

(days)
A.3. Variables
Variable
 Description
 Units
At�‘ ðtÞ
 Ancillary service quantity at level ‘ 2 L
 [–]⁄
�Et�‘ ðtÞ
 Energy sold in market at level ‘ 2 L
 [–]⁄
Et�‘ ðtÞ
 Energy purchased in market at level ‘ 2 L
 [–]⁄
Et�3ðtÞ
 Net energy generated at time t 2 T �
 [–]⁄
Êt�3ðtÞ

Electricity delivered to onsite demand at time
t 2 T �
[–]⁄
f t�3ðtÞ
 Fuel consumption at time t 2 T �
 MW
nt�‘ ðtÞ
 Non-spinning reserve capacity sold in market
‘ 2 L
[–]⁄
st�‘ ðtÞ
 Spinning reserve capacity sold in market ‘ 2 L
 [–]⁄
St�3ðtÞ
 Battery storage level at time t 2 T �
 [–]⁄
S0
 Battery storage level at time t ¼ 0 (initial
condition)
[–]⁄
ŝt�3ðtÞ
 Steam delivered to onsite demand at time
t 2 T �
[–]y
rþt�‘ ðtÞ

Regulation up capacity sold in market ‘ 2 L
 [–]⁄
r�t�‘ ðtÞ
 Regulation down capacity sold in market ‘ 2 L
 [–]⁄
Rt�3ðtÞ
 Regulation capacity covered by energy sales
 [–]⁄
RA
 Revenue from ancillary service sales
 $

RE
 Net revenue from energy sales/purchases
 $

zt�3ðtÞ
 Intermediate variable for ramp rate constraint
 [–]⁄
y These variables and parameters are scaled by steam generation nameplate
capacity, Ksteam .
⁄ These variables and parameters are scaled by the electricity generation nameplate
capacity, KE .
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