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a b s t r a c t

An avenue for modelling part of the long-term variability of the wind energy resource from knowledge of
the large-scale state of the atmosphere is investigated. The timescales considered are monthly to sea-
sonal, and the focus is on France and its vicinity. On such timescales, one may obtain information on
likely surface winds from the large-scale state of the atmosphere, determining for instance the most
likely paths for storms impinging on Europe. In a first part, we reconstruct surface wind distributions on
monthly and seasonal timescales from the knowledge of the large-scale state of the atmosphere, which is
summarized using a principal components analysis. We then apply a multi-polynomial regression to
model surface wind speed distributions in the parametric context of the Weibull distribution. Several
methods are tested for the reconstruction of the parameters of the Weibull distribution, and some of
them show good performance. This proves that there is a significant potential for information in the
relation between the synoptic circulation and the surface wind speed. In the second part of the paper, the
knowledge obtained on the relationship between the large-scale situation of the atmosphere and surface
wind speeds is used in an attempt to forecast wind speeds distributions on a monthly horizon. The
forecast results are promising but they also indicate that the Numerical Weather Prediction seasonal
forecasts on which they are based, are not yet mature enough to provide reliable information for
timescales exceeding one month.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Owing to a well-established technology and the ever stronger
push towards replacing fossil fuels with clean renewable power,
wind energy has seen a dramatic growth in the recent years. Ac-
cording to the European Wind Energy Association, about 12.8 GW
of wind power was installed in the European Union (EU) in 2015,
bringing EUs total installed capacity to 141.6 GW. This corresponds
to an electricity generation sufficient to cover 11.4% of the EUs
electricity consumption during an average year [1].

With the growing importance of wind energy, the interest and
demand for forecasts of the wind speed near the surface has seen a
major boost. Numerous methods exist for forecasting the wind
speeds at different forecast horizons implying different applica-
tions [2,3]. Many studies focus on the short-term scale ranging from
several minutes to 1 day [4e6]. Medium-term forecast methods,
ranging from several days up to 10 days, have also been well
investigated [7e9]. On much longer timescales and with very
different implications and motivations, the impact of climate
change on wind speeds has also been addressed [10e12].

By contrast, the intermediate timescale ranging from one
month to a season (hereafter referred to as long-term) has
received only little attention. Monthly and seasonal forecasts can
be very useful for example in maintenance planning, financial
estimates and predictions of electricity generation for network
management. Some studies showed good results in forecasting
the monthly mean wind speed at several observation sites by
using Artificial Neural Network models (ANN) [13,14], giving an
accurate trend of the wind speed at the yearly horizon, but a
limited information on the wind variability at higher frequency.
Other authors forecasted daily mean wind speed at the seasonal
scale using ANN [15e17] allowing to gather more information on
the wind variability inside a given season and which would allow
to evaluate the energy production. The ANN output is a predicted
wind time serie. They calculate the error regarding the real wind
speed and compare the results to other ANN [15,16] or other
statistical methods namely ARIMA models [17]. As ANN behaves
like black box fed with data, the results are difficult to explain
physically. Moreover, each methods focuses on different obser-
vation sites, thus giving a limited idea of the spatial variations of
the method performance. Even though there are very few works
on seasonal forecasts of wind speeds, seasonal forecasting of other
meteorological quantities is a popular research topic with
continuous improvement. For example, there have been many
works on seasonal forecasts of recurrent oscillating patterns in the
atmosphere, such as the El Nino [18,19].

This paper focuses on modelling the wind variability on the
long-term timescale and makes an attempt of long-term wind
speed distribution forecasting. The method proposed in this work
aims to use the information found in the large-scale configuration
of the atmosphere in order to reconstruct expected distribution of
surface winds. This paper answers some questions that arise from
this topic:
� Howmuch information on the monthly or seasonal distribution
of surface winds can we obtain from knowledge of only the
large-scale state of the atmosphere?

� Are the proposed methods performing better than the clima-
tology in reproducing the surface wind speed distribution, and
in estimating the electricity generation?

� Do seasonal forecasts from an operational center of weather
production contain relevant information for an attempt of
forecasting wind speed distributions and electricity generation?

To address these questions in a consistent framework, we use
data from the European Center for Medium-Range Weather Fore-
casts (ECMWF). Indeed, surfacewinds from ECMWF reanalysis have
been shown towell reproduce the observed surfacewinds in France
[20]. Using reanalysis data allows a better investigation of the
statistical relation between local surface winds and the large-scale
circulation variability, especially because they provide a continuous
description of surface wind speed over a wide domain and over
long time period. We focus on France and its vicinity not only
because the reanalyzed winds had been assessed there, but also
because France has a significant wind energy potential and inter-
estingly includes regions with different wind regimes. In Northern
France the wind energy potential stems from the storm tracks,
whereas local orographic effects and channeling play a major role
in strong wind events of Southern France [21].

In the first part of this paper, the data and methodology used to
link the large scale circulation with the surface wind speed and to
reconstruct its monthly/seasonal distributions is described. Then,
the performance of the proposed methods is evaluated by
comparing their results to the climatological distributions. The
performance is evaluated in terms of reconstructed electricity
generation as well. In the last part of the paper, an attempt in
forecasting wind speed distributions and electricity generation is
discussed.
2. Data and methods

2.1. Data

2.1.1. ERAI reanalysis
Wind speed, geopotential height at 500 hPa (Z500) and Mean

Sea Level Pressure (MSLP) are collected from ERA-Interim rean-
alysis (ERAI, [22]) with a time-step of six hours during 35 years
between 01/01/1979 and 12/31/2013, and then averaged to daily
data in order to remove the intra-day variability of the wind.
Indeed, large-scale circulation of the atmosphere cannot explain
intra-day variability such as the diurnal cycle. Moreover, at the
seasonal timescale, 6-hourly wind speed variance amounts to
about 15% of the total variance. The horizontal resolution of ERAI is
0:75+ in latitude and longitude. Z500 and MSLP span the North
Atlantic and European grid (20+ N to 80+ N and 90+ W to 40+ E),
and the surface wind speeds are obtained for a domain encom-
passing France (40:5+ N to 52:5+ N and �6:75+ W to 10:5+ E).
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The ERAI reanalysis data act as the reference data for wind
speed. B. Jourdier [20] showed that the ERA-Interim reanalysis has
a good skill for wind speeds in France, and is the best in comparison
to two other reanalyses: MERRA and the NCEP/NCAR. To recon-
struct the distribution of the wind, a 20-year calibration period, on
which we train our methods, has been defined from 1 January 1979
to 31 December 1998. Then a validation period lasting 15 years from
01 January 1999 to 31 December 2013 follows. This period is used to
assess the reconstructed distributions with respect to seasonal and
monthly wind speed distributions based on ERA-I.

2.1.2. ECMWF forecasts
In the forecast section, the full 35 years period of ERAI is used as

a calibration period, while the period of forecast is always of 3
months, allowing to predict either monthly or seasonal distribution
of the surfacewind speed.We retrieve twelve seasonal forecast sets
of ECMWFs numerical weather prediction model [23], from the
years 2012, 2013 and 2014, each lasting three months, starting from
January, April, July and October. Each set is composed of 41 seasonal
forecast members fromwhichwe compute themost likely scenario.
This scenario is used as the only forecasted state of the atmosphere.
We apply the same methods using the 35 years of ERAI to learn the
relation between the surface wind speed and the large-scale cir-
culation of the atmosphere, and apply this relation to the forecasted
state of the atmosphere to predict wind speed distribution. In this
part of the paper, we use ECMWF Analysis as reference for wind
speed. Indeed, ECMWF analysis allows to confront the methods to
datawhich are very close to the actual wind speed. The assimilation
system and model may not differ to much from the one used for
ERA-I reanalysis.

2.2. Methods

In this paper, we follow an approach similar to the perfect
model approach ([24]) by using the surface wind speed from
ECMWF reanalysis or analysis as the reference against which
reconstructed wind speed distributions must be evaluated. By
construction, the surface wind speed and 500-hPa geopotential
height from ECMWF reanalysis or analysis are consistent between
each other. This approach ensures to isolate the errors associated
with the reconstruction methods only. Evaluating against surface
wind speed measurements would require to quantify the various
sources of errors, including representativity and instrument er-
rors, which is out of the scope of this work and would not help in
quantifying the ability of our method for monthly/seasonal fore-
cast of wind speed.

At a monthly to seasonal timescale, the surface wind speed is
mainly explained by the large scale circulation of the atmosphere.
The geopotential height at 500 hPa (Z500) and the Mean Sea Level
Pressure (MSLP) are variables that well summarize this circulation.
In this paper, we only present the results of reconstruction using
the Z500 variable as a predictor of the surface wind speed. Indeed,
results found when adding MSLP to Z500 predictor were compa-
rable and the improvement was neither systematic nor significant.

In the following paragraphs, we describe in detail the recon-
struction methodology which is summarized in Fig. 1.

Our attempt aims at reconstructing the distribution of winds on
the monthly to seasonal timescales, but not at reconstructing daily
timeseries of winds. Indeed, our reconstruction methodology is
based on the principal components analysis of the Z500 predictor
which informs about the large-scale state of the atmosphere. This
knowledgewill constrain the likely distribution of surfacewinds on
timescales larger than the lifetime of individual synoptic systems
(fronts, storms) and thus will not allow to reconstruct such high
frequency timeseries. Following the common practice, we use the
Weibull distribution to summarize the surface wind speed distri-
bution [25,26].
2.2.1. Principal component analysis
To obtain a more compact representation of the large-scale

situation we perform a Principal Component Analysis (PCA) on
Z500. It results in a set of Empirical Orthogonal Functions (EOF),
which represent the typical oscillation patterns spanning the North
Atlantic domain. Each EOF is associated with one scalar timeseries
(the corresponding PC) which describes how each pattern evolves
in time. Fig. 2 shows the five first EOFs and their associated PCs.

The first PC corresponds to the seasonal cycle (Fig. 2 a,b),
explaining as much as 54.1% of the variance in the dataset: inwinter
the meridional pressure gradient strengthens, leading to stronger
winds and more intense synoptic systems. The following four PCs
have a clear physical interpretation [27,28], they all be related to
teleconnection patterns, respectively the North Atlantic Oscillation
(NAO) (Fig. 2 c,d), the Eastern Atlantic Pattern (EA) (Fig. 2 e,f), the
Scandinavian pattern (SCA) (Fig. 2 g,h) and the 2nd European
pattern (EU2) (Fig. 2 i,j). These five first PCs explain 76.8% of the
variance in the entire dataset (Table 1).
2.2.2. Weibull distribution
To summarize the wind distributions, we choose the Weibull

distribution as the parametric representation for monthly and
seasonal distribution of the surface wind speed at a given location.
This theoretical distribution is widely used in the wind energy in-
dustry [29,30,25]. It provides a simple way to represent the wind
distribution as it is based on only two parameters: the shape
parameter and the scale parameter. We must highlight the fact that
other theoretical distributions better capture the shape of the real
wind distribution. In particular, the Rayleigh-Rice distribution can
have two modes, which is not the case for the Weibull [21,31].

The probability density function (PDF) and the cumulative dis-
tribution function (CDF) of the Weibull distribution are expressed
as follows.

f ðu; k; cÞ ¼ k
u

�u
c

�k
e�ðu=cÞk (1)

Fðu; k; cÞ ¼ 1� e�ðu=cÞk ; (2)

where u is the wind speed, k and c are respectively the shape and
the scale parameter.

We now define threeways to reconstruct the parameters k and c
from the data. TheWAsPmethod, referred in the following asWAsP

[32], computes these parameters from the moments U and U3, as
well as the probability of exceeding the mean wind speed 1� PðUÞ
(which must be estimated from the data). The method focuses on
the right-hand tail of the Weibull distribution, which is an impor-
tant part of the distribution in terms of energy [33]. This is why the
WAsP method is preferred amongst the wind energy industry. In
this method, k and c are calculated by solving the following
equations.

U
3

U3
G
�
1þ 3

k

�k
3

¼ �ln
�
1� P

�
U
��

(3)

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3

G
�
1þ 3

k

�3

vuuut (4)

In a second method, referred in the following as KCrec, we take



Fig. 1. Reconstruction Method: Flow chart describing the reconstruction methodology.
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advantage of the fact that the Weibull distribution is given by two
parameters, k and c, and straightforwardly reconstruct these: they
are fitted by the Maximum Likelihood Estimator (MLE) [34] on the
calibration period. The MLE of theWeibull parameters is defined by
the following equations.

Pn
i¼1u

k
i lnðuiÞPn

i¼1u
k
i

� 1
k
� 1
n

X
i¼1

n

lnðuiÞ ¼ 0; (5)

c ¼
Pn

i¼1u
k
i

n
: (6)

A last method was introduced in order to take into account how
spread out the wind distribution is. This method, referred in the
following as Perc, uses two values, Fðu1Þ and Fðu2Þ, of the Weibull
distribution function, corresponding to wind speeds u1 and u2. The
Weibull k and c parameters are then given explicitly by:

c ¼
ln ln

�
1

1�Fðu2Þ
�
lnðu1Þ � ln ln

�
1

1�Fðu1Þ
�
lnðu2Þ

ln ln
�

1
1�Fðu2Þ

�
� ln ln

�
1

1�Fðu1Þ
� ; (7)

k ¼ c
u1

ln ln
�

1
1� Fðu1Þ

�
: (8)

In order to determine the optimal values of u1 and u2, a syn-
thetic test was performed. First, we generated 30 (onemonth) or 90
(one season) samples from the reference Weibull distribution with
parameters k ¼ 2 and c ¼ 3:5. Next, we determined the two Wei-
bull parameters from the simulated samples using the Percmethod,
using different combinations ðu1;u2Þ. To find the best combination,
we compared the resulting distributions with the reference
distribution using the Cramer-von Mises (CvM) score (see
Appendix). It was found that the best combination on a monthly
scale is the 11th and 83rd percentile. On the seasonal scale, the
optimal combination is the 17th and the 92nd percentile. The
combination of the percentiles was not found to be very sensitive,
as there was a small region around the optimum combination with
very similar scores.
2.2.3. Multi-polynomial regression
We propose to link the large-scale situation and surface wind

speed distribution by a multi-polynomial regression taking the
monthly mean PCs as explanatory variables and the parameters of
the Weibull distribution as dependent variables:

~P ¼ b0 þ
XN
n¼1

bnCnðtÞ þ
XN
n¼1

bn;nCnðtÞ2 þ
XN�1

n¼1

�
XN

m¼nþ1

bn;mCnðtÞCmðtÞ: (9)

Here, ~P is the dependent variable (Weibull parameter k or c for a
given location), Cn are the principal components and bn;n and bn;m
are the regressionweights found by least squares. The number N of
principal components is determined by cross validation as
explained below.We perform the regression on a calibration period
of 20 years between 1979 and 1998. This results in weights quan-
tifying the relationship between the large-scale circulation and the
Weibull parameters for each individual location. These weights can
be combined with the known PC values on the reconstruction
period of 15 years between 1999 and 2013 to reconstruct the
monthly/seasonal Weibull distribution.



Fig. 2. EOFs & associated PCs: Five firsts EOFs (left side) and five first PCs (right side) of the PCA performed on the 35 years and on the entire domain of ERAI Z500 dataset.
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Table 1
Variance Explained: Five first Principal Components of the Z500 and the percentage
of variance explained by each of them.

Pattern PC Variance
explained (%)

Cumulative variance
explained (%)

Seasonal cycle 1 54.1 54.1
NAO 2 8.1 62.2
EA 3 5.6 67.8
SCA 4 5.2 72.9
EU2 5 3.9 76.8

B. Alonzo et al. / Renewable Energy 113 (2017) 1434e1446 1439
2.2.4. Optimizing the number of principal components through
cross validation

The first five PCs of the Z500 can be easily interpreted as pre-
dictors of the wind. Still, to a certain extent, the following PCs can
also explain the variability of the wind at the monthly/seasonal
scale. To check whether taking five PCs is really optimal, we per-
formed a cross-validation procedure. For this purpose, we calcu-
lated the temporally and spatially averaged CvM score (see
Appendix) of 7 reconstructions of 5 years each, taking the
remaining 30 years of the data set as calibration period. Fig. 3 plots
the CvM scores as function of the number of PCs used. The mini-
mum mean CvM is clearly apparent for all three methods for both
monthly (Fig. 3 a, b, c) and seasonal (Fig. 3 d, e, f) reconstruction.
The minimum is found for 5 PCs for monthly distribution recon-
structed by Wasp method (Fig 3 a), 7 PCs for monthly distribution
reconstructed by KCrec method (Fig 3 c), and 6 PCs for the others
(Fig. 3 b,d,e,f). As the 5 first PCs are all related to well understood
teleconnection patterns explaining the large-scale circulation of the
atmosphere, we expect them to be accurately linked to the wind
speed variability at the monthly and seasonal timescales. Results
obtained by cross-validation confirms this relation, as the optimal
amount of PCs used is close to 5 (Fig. 2).

3. Evaluating the reconstruction methods

As mentionned in the Introduction, we use the wind speed from
the ERAI-reanalysis as the reference wind speed. To assess the
Fig. 3. Cross validation: Mean CvM score obtained by cross validation in function of the num
right: Wasp (a,d), Perc (b,e), and KCrec (c,f) methods; top: CvM score for monthly wind
reconstruction (d,e,f).
reconstruction quality, the CvM score (see Appendix) is calculated
between the reconstructed CDF and the ERA-I wind CDF. The CvM
scores of the reconstructed wind speed distributions are then
compared to the CvM scores computed between the ERA-I wind
CDF and the ERA-I climatological CDF. In simple terms, the clima-
tological distribution is the distribution of all values of wind for
each month or season in one specific location, based on all rean-
alysis data from this location and the specific month or season. The
climatological distributions are usually used by the industry to have
a first assessment of the wind energy production at a seasonal
timescale. An example of ERA-I, ERA-I climatological and recon-
structed wind speed CDFs is shown in Fig. 4. In the following, the
monthly and seasonal ERA-I climatological distributions (averaged
over the 20-year reference period) will be denoted ‘climatology’.
3.1. Performance of methods for wind speed distribution
reconstruction

The CvM score allows to test the null hypothesis (H0) that the
two samples come from the same distribution. Assuming that the
reconstructed distributions and the ERA-I distributions are based
on samples large enough to say that the corresponding CvM scores
follow the limiting distribution, we can define the p-value corre-
sponding to 95% confidence (see Appendix). If the calculated CvM
score is below this value, we can say at 95% confidence that the two
compared samples come from the same distribution. We compare
results of the tests for the climatology and the reconstruction
methods. We can define five different cases:

� Case A: H0 is not rejected for the method and rejected for the
climatology

� Case B: H0 is not rejected for both and the CvM of the method is
smaller than the CvM of the climatology

� Case C: H0 is not rejected for both and the CvM of the method is
larger than the CvM of the climatology

� Case D: H0 is rejected for the method and not rejected for the
climatology

� Case E: H0 is rejected for both the method and the climatology
ber of PCs used to reconstruct the distribution of the surface wind speed. From left to
distribution reconstruction (a,b,c); bottom: CvM score for seasonal wind distribution



Fig. 4. CDFs example: ERA-I, ERA-I climatological, and reconstructed seasonal CDFs for
winter 2012 at 48:5+ N 3:0+ W.
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The hypothesis of the Weibull distribution introduces a bias in
the reconstructed CDF. We compare results obtained for recon-
structed CDF to ERA-I climatology (a) and to the parametric
climatology (b) which follows a Weibull distribution fitted by MLE
on the ERA-I wind speed. Results over the whole domain in all
different cases are given in Tables 2 and 3 for monthly and seasonal
reconstruction respectively.

The first lines of Tables 2 and 3 show the fraction of time each
method gives a distribution not discernable from the ERA-I distri-
bution at 95% confidence level. It shows that all methods, appart
from Wasp, have a good ability to reconstruct the real wind dis-
tribution. We can also see that fitting a Weibull distribution on the
climatology reduces by about 10% this percentage. Cases A and B
summarize the number of time each method is doing better than
the climatology (non-parametric (a) or parametric (b)). On the
contrary, Cases C and D summarize the number of time the
climatology is doing better than the method. On average, on the all
domain and for monthly and seasonal timescales, the non-
parametric climatology (a) do better than every methods more
than 60% of the time (78.1% against Wasp at the seasonal scale, to
62.3% against KCrec at the monthly scale). Nevertheless, when
comparing to the parametric climatology, for monthly and seasonal
reconstruction, the KCrecmethod performs 49.1% of the time better
at monthly scale, and 48.1% at the seasonal scale. This shows again
the error brought by the Weibull distribution reconstruction. In all
cases, methods perform better at the monthly scale than at the
seasonal scale. It is interesting to notice that the cases for which the
percentage is increased at the seasonal scale are cases D and E,
corresponding to times when reconstructed distribution cannot be
believed to come from the same distribution as the ERA-I sample, at
95% confidence level. (Tables 2 and 3).

Figs. 5 and 6 show on average on the validation the number of
time each method behaves better than the classical climatology
Table 2
CvM test results: Percentage of time the result of the CvM test gives Cases A,B,C,D, or E
distribution compared to the classical climatology (a) and to the parametric climatology

Methods Wasp Perc
CvM < p 69.1 82.1
Comparison with a b a b
Case A 5.8 11.5 6.5 11.9
Case B 17.8 24.1 25.0 34.0
Case C 45.5 33.5 50.5 36.2
Case D 26.0 24.1 13.8 11.6
Case E 4.8 6.8 4.1 6.3
(Cases A and B). It can be seen that the Perc and KCrec methods do
better than the Wasp method. Indeed, at monthly timescale, the
Perc and KCrec methods can do better than the climatology in
average more than 30% of times, while the Wasp method does
better than the climatology about 25% of times on average dis-
playing a clear difference between north and south (Fig. 5 and
Table 2). On a seasonal scale, the Wasp method performs clearly
worse than at a monthly scale. The Perc and KCrec methods at a
seasonal scale display an interesting spatial variability. Indeed, they
do more than 40% of times better than the climatology in the north
of France, whereas in the south, this percentage is about 20%e25%
(Fig. 6). When comparing to the parametric climatology, all
methods display the same pattern, but all percentages are
increased by more than 10% (Not shown).

Fig. 7 shows the ratio of the number of times each method is
doing better than the climatology for seasonal distributions, by
taking each season separately. We can clearly see on this figure that
the performance regarding the climatology of the Perc and KCrec
methods, and to a certain extent theWasp method, depends on the
season and on the region. Indeed, both the Perc and the KCrec
methods display a high percentage of times (up to 70% at some
points) when they do better than the climatology in the north of
France for the winter and autumn seasons. In the north of France,
the storm track variability is highly responsible for the inter-annual
variability of the wind speed distribution. In winter and fall, it is
very active compared to spring and summer. This explains why
reconstructionmethods perform better than the climatology in this
region, in those seasons. The comparison analysis mainly highlights
the fact that, by construction, the climatology captures only a mean
state of the atmosphere over 20 year (and is not significantly
affected by long-term wind trends), while the model captures the
variability of the wind at timescales from intra-annual to decadal.
3.2. Performance of the methods for estimating the capacity factor

For wind energy purposes, it is not exactly the full wind distri-
bution that needs to be estimated. For a given turbine, once the
wind is beyond the cut-out wind speed or below the cut-in speed,
the precise value does not matter. In the present section we take
this into account and reevaluate each method. A preliminary step
consists in designing a procedure which imitates the weighting of
wind values by a power curve, in a manner which accounts for the
considerable geographical variations of the wind (a single, generic
power curve would not make sense).

Each wind turbine is characterized by its power curve which
gives the output power as a function of the wind speed. The energy
produced during a given period can be expressed as:

E ¼ T
Z∞

0

PoutðuÞdU; (10)

where T is the period considered (month or season) and PoutðuÞ is
on the whole domain, for the entire validation period, for monthly reconstructed
(b). The p-value, p, is 0.46136 for 95% confidence level (see Appendix).

KCrec Clim Parametric Clim
85.2 89.3 81.7
a b e e

6.9 13.0 e e

27.3 37.1 e e

51.1 35.1 e e

11.2 9.5 e e

3.7 5.3 e e



Table 3
Same as Table 2 but for seasonal distribution.

Methods Wasp Perc KCrec Clim Parametric Clim
CvM < p 44.3 73.3 79.8 88.6 77.3
Comparison with a b a b a b e e

Case A 3.8 8.9 5.5 11.0 6.1 13.9 e e

Case B 10.5 13.6 22.8 31.2 23.8 34.2 e e

Case C 30.0 21.9 45.0 31.1 49.9 31.7 e e

Case D 48.1 41.9 20.8 15.0 14.9 11.4 e e

Case E 7.5 13.8 5.9 11.7 5.3 8.8 e e

Fig. 5. Reconstructed CDFs vs climatology: Fraction of times each method does better than the climatology (cases A and B) for monthly distribution reconstruction. From left to right:
Wasp (a), Perc (b), KCrec (c).
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the output power given thewind speed u. The capacity factor (CF) is
defined as the ratio between the actual energy produced during a
given period and the energy that would have been produced if the
wind turbine had run at its maximum power during the entire
period:

CF ¼ E
PnT

; (11)

where Pn is the nominal power of the wind turbine.
In order to take into account the fact that the data used are at 10-

m height and the mean wind speed is highly varying among
different locations, we use a location-adapted power curve, pro-
posed by Ref. [31]. In this curve, the wind speed is divided by a
Fig. 6. Same as Fig. 5 but for season
location-dependent parameter a, chosen so that the modified po-
wer curve has a capacity factor of 23% on the calibration period.
This corresponds to the average capacity factor in France in 2014
[35]. This procedure is illustrated in Fig. 8.

To assess the accuracy of the reconstructed capacity factor, the
relative error between the reconstructed capacity factor and the
capacity factor from the reanalysis is computed:

DCF ¼ CF � CFreal
CFreal

(12)

Figs. 9 and 10 show the relative error on the calculated capacity
factor for monthly and seasonal reconstructions respectively. At
both timescales, the Perc method overestimates it mostly onshore
al distribution reconstruction.



Fig. 7. Reconstructed CDFs vs climatology, Seasonal fraction: Fraction of time each method do better than the climatology (cases A and B) for seasonal distribution reconstruction
based on Z500 for each season. From left to right: Winter, Spring, Summer and Autumn; From top to bottom: Wasp, Perc, and KCrec methods.
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by about 25% on average. The KCrec method behaves like the Perc
methods at the monthly scale, but is performing better at the
seasonal scale with an overestimation of about 10% onshore. As
expected, theWaspmethod shows good performance in estimating
Fig. 8. Power curve: Example of the location-adapted power curve. In solid black: the
real power curve for wind speed at 80 m height; in dashed blue: the adapted power
curve. It has the same shape, but the wind speed is divided by a number a to achieve a
capacity factor of 23%. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
the capacity factor as its reconstruction focuses on the right tail of
the Weibull distribution. Nevertheless, it overestimates the energy
production in the northern part of France at a monthly scale and
underestimates it in the southern part of France at a seasonal scale.
The non-parametric climatology behaves very well at the seasonal
scale even though it displays a slight overestimation in the north of
France. At the monthly scale, on average, on the entire domain it
overestimates the capacity factor by about 25%. By contrast, the
parametric climatology behaves very badly at the monthly scale,
overestimating the energy production by 50% in average. At a
seasonal scale, this overestimation decreases but is still high,
highlighting again the error induced by the Weibull distribution
hypothesis.

In any case, there is a tendency of all methods to overestimate
the capacity factor, mostly onshore. The climatology acts as a filter
of high frequency variation of the wind, meaning that it does not
describe well the tails of the distribution. As the power curve is
designed so that the wind turbine works at its nominal power near
the mean wind speed, this results in an overestimation of the ca-
pacity factor.

On the other hand, Drobinski et al. [21] showed that a Weibull
distribution fitted by MLE describes well the center of the distri-
bution (near the meanwind speed), but tends to underestimate the
tails of the distribution. This leads to the same consequence. This
explains why the parametric climatology acts worse than the non-



Fig. 9. Reconstruction of the capacity factor: Relative error on the capacity factor (%) for monthly distributions given by: non parametric climatology (a), parametric climatology (b),
Wasp (c), Perc (d), and KCrec (e).

Fig. 10. Same as Fig. 9 but for seasonal distributions.
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parametric climatology, but also why KCrec overestimates the ca-
pacity factor. This has no such effect offshore because the wind
above sea is steadier so that the distribution is more peaked around
themean. Regarding the Percmethod, theWeibull reconstruction is
based on two percentiles defined tominimize the CvM score. It may
results in the same effect of underestimating the tails of the dis-
tribution. Future work could focus on a sensitivity analysis to the
percentiles definition by minimizing the error on capacity factor.

At the seasonal scale, the real distribution is based on a larger
samplewhich implies that the center of the distribution has amuch
larger weight than the tails at this scale than at the monthly scale.
The effect of underestimating the tails is thus less visible.
4. Towards monthly and seasonal forecast of the wind speed
distribution

The analysis described above has shown that the large-scale
state of the atmosphere contains information on the likely distri-
bution of surface winds, and our proposed methods allow to
recover at least part of this information. A long-term perspective
will be to use this to build forecasts of surface wind distributions.
Below we present a preliminary attempt based on seasonal
ensemble forecasts of the Z500 from ECMWF [23], to assess the
potential of this method for monthly or seasonal forecasts of the
wind speed distribution.

A first step is to assess the skill in seasonal forecasts for pre-
dicting the large-scale state of the atmosphere in our region of
interest. The root mean square error (RMSE) between the daily PCs
of Era-Interim and those of the seasonal forecast is shown in Fig. 11.
This figure gives an idea of the lead-time of such a forecast. It shows
Fig. 11. Errors in raw seasonal forecasts: RMSE calculated between the PCs of Era-Interim a
dashed lines represent the 60th percentile (top) and the 40th percentile (bottom). a. Seaso
that the error increases rapidly until it levels off after 20 days
indicating that there is no more valuable information on the large-
scale circulation in the data. As a consequence, it will not be
possible to have an accurate wind distribution forecast at more
than the monthly horizon.

One technical difficulty arises: the monthly distribution of wind
coming from the ECMWF analysis stands for the real distribution.
As the analysis does not come from the same model as the ERA-
Interim data, a bias exists between the distributions coming from
the analysis and the distributions based on ERA-Interim data. We
thus apply a classical quantile/quantile correction between the 4
years based distributions of the analysis and of ERA-Interim be-
tween 2012 and 2015 at each point of the gridded domain. We
apply this correction to the monthly wind distribution of the
analysis. Because of the small amount of forecasts and of the un-
certainties due to the bias, we will not be able to have the same
deep analysis as in the reconstruction part of the paper. The cor-
rected monthly distribution of the wind speed coming from the
analysis is compared to the climatology of ERA-Interim and to the
forecast distributions using the CvM score.

The percentage of time each method does better than the
climatology, averaged over the entire domain, for the 1st month of
the 12 forecasts, is summarized in Table 4. The results for the Perc
and KCrec methods are comparable to the reconstruction results.
On the contrary, the Wasp method shows a very high score when
evaluating the entire distribution and a lesser score when evalu-
ating the energy production, which is not consistent with the
reconstruction results. When calculating the error on the capacity
factor, the forecast methods always highly overestimate the wind
energy production onshore (more than 100% at some points), and
nd the PCs of the seasonal forecast. The solid line represents the median of the error,
nal, b. NAO, c. EA, d. SCA, e. EU2.



Table 4
Forecasts results: Percentage of the number of times each method does better than
the climatology on the whole domain for the 3 years of forecasts. First values
correspond to the evaluation of the entire distribution; values in parenthesis cor-
responds to the evaluation of the distribution between the cut in and the cut out.

Forecast method Wasp Perc KCrec

total 1st month 46.4 (31.2) 20.2 (25.5) 28.8 (27.5)

2012 41.0 (35.0) 15.1 (20.5) 22.9 (23.6)
2013 44.1 (25.7) 22.9 (25.4) 32.4 (26.5)
2014 54.0 (33.0) 22.5 (30.4) 31.3 (32.3)
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slightly underestimate it offshore (more than 10%). The non-
parametric climatology overestimates the capacity factor by more
than 10% onshore and underestimates it offshore, whereas the
parametric climatology highly overestimates the energy produc-
tion on the whole domain as it was the case in the evaluation part.

Regarding the large uncertainty due to the limited number of
forecasts, the robustness can be inferred from the consistency of
the forecasts results with those obtained in the previous section.

Still, work must be continued to evaluate the forecasts perfor-
mance of such methods, by using larger sets of numerical seasonal
weather forecast, but also by testing methods based on non-
parametric distribution estimation.

5. Conclusion

In this paper, a new approach for modelling the wind speed at
the seasonal scale has been proposed.We suggest tomodel not only
the mean wind speed but the entire monthly/seasonal distribution
of the wind. Linking the wind to its synoptic predictors we have
shown that there is valuable information in the large-scale circu-
lation variability that can explain the wind speed distribution at
such long timescales. The proposed methods show good perfor-
mances in reconstructing the monthly and seasonal wind speed
distributions even if the climatology is still a good predictor.
Moreover, reconstruction methods performances display an inter-
esting spatial and seasonal variability. Indeed, in the north of France
in winter and fall, the proposed methods showed better ability to
model strong winds than the climatology. Nevertheless, the
attempt of forecasting also highlights the fact that seasonal fore-
casts of ECMWF are not yet mature enough to give valuable infor-
mation on the large-scale circulation variability at the horizons
exceeding a month. Future work will be dedicated to the evaluation
of the method against in-situ data.
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Appendix. Cramer-Von Mises score

To assess the reconstruction quality, we use the Cramer-Von-
Mises score defined in Anderson et al. [37]:

CvM ¼ MN
M þ N

Z∞

∞

½FNðxÞ � FMðxÞ�2dHMþNðxÞ (.1)

Here, M and N are the sample sizes in each of the distributions,
FNðxÞ and FMðxÞ are the CDFs of the two samples and HMþNðxÞ is the
combined distribution of the two samples together. The smaller the
CvM score, the better the goodness of fit between the two tested
distributions. Anderson et al. [37] showed that Equation (.1) is
equivalent to

CvM ¼ U
NMðM þ NÞ �

4NM � 1
6ðN þMÞ; (.2)

where U ¼ N
PN

i¼1ðri � iÞ2 þM
PM

j¼1ðrj � jÞ2, ri are the ranks of the
elements of the sample of size N in the combined sample and rj are
the ranks of the sample of size M in the combined sample.

The CvM score allows to test the null hypothesis H0:”the two
samples come from the same distribution”. When M/∞ and
N/∞, under the null hypothesis, the CvM score follows the
limiting distribution with mean 1

6 and variance 1
45. In this configu-

ration, the p-value giving 95% confidence that the null hypothesis is
true is p ¼ 0:46136, [37].
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