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a b s t r a c t

In this study, an inexact two-stage stochastic fuzzy programming (ITSFP) is developed for regional power
generation planning with considering the intermittency and fuzziness of renewable energy power
output. ITSFP incorporates interval-parameter programming (IPP), two-stage stochastic programming
(TSP), and fuzzy credibility constrained programming (FCCP) within a general optimization framework
which can tackle uncertainties expressed as intervals, probability distributions, and fuzzy sets. The
developed method is applied to a regional electric power system over a one-day optimization horizon
coupled with air pollution control. The power generation schemes, imported electricity, and system cost
under various environmental goals and risk preferences are analyzed. The obtained results indicate that
the model can provide a linkage between predefined electric power generation schedule and the relevant
economic implications, as well as more reasonable decision alternatives for decision makers by loosening
system constraints at specified confidence level. Besides, the fuzziness of forecast error corresponding to
the variability of renewable energy resources could be effectively reflected. Moreover, the results are
useful for addressing the trade-off between system economy and system risk.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid development of economic and prompt growth of
population, electric power consumption has been continuously
increasing over the past decades. Meanwhile, electric power gen-
eration relied primarily on fossil fuels has brought serious envi-
ronmental problems, such as excess atmospheric pollution
discharge, greenhouse gas emission, and water pollution. For
example, in China, the electric power industry was responsible for
approximately 31.4% of the total SO2 emissions in 2014, which
would be likely to exacerbate air pollution and impose impacts
direct and indirect on public health. In recent years, with the
increasing severe environmental pollution and aggravated energy
shortage crisis, environmental friendly renewable energy is
deemed to be the most appropriate option to replace conventional
energy resources, which is received more and more attention all
over theworld. However, there are some crucial limitations existing
in the effective development and utilization of renewable energy,
such as high levels of variability and uncertainty, low conversion
efficiency and time mismatch with load demand for renewable
power. Among those questions, the intrinsic intermittence and
fluctuation would cause the fuzziness and uncertainty of power
output, resulting in difficulty for formulating efficient generation
schedules and serious consequences to the dynamic economic
dispatch in regional power grid [1e5]. Moreover, in regional elec-
tric power systems, varieties of processes corresponding to elec-
tricity generation, import/export distribution, as well as economic
parameters associated with uncertainties and complexities should
be considered by decision makers simultaneously [6e10]. There-
fore, it is desired to develop an effective tool for dealing with un-
certainties, reflecting better renewable energy operation
characteristics, and modeling electric power system management
considering pollutants emission control.

Previously, a significant amount of systems analysis techniques
were employed for solving those generation scheduling problems.
For example, Moura and de Almeida [11] developed a novel multi-
objective optimization model for renewable energy system opera-
tion management considering demand-side management and
response technologies. Considine and Larson [12] developed a
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system economic model for short term power generation technol-
ogies switching or substitution coupled with carbon cap and trade
by introducing the European Union's emissions trading system.
Ippolito et al. [13] proposed a multi-objective optimized manage-
ment model of electrical energy storage systems for an existing
islanded distribution network with renewable energy sources in the
Mediterranean Sea. Guo et al. [14] presented an optimal model for
power generation dispatch, where wind and coal-fired power gen-
eration technologies were integrated in a regional electric power
system. Taha et al. [15] developed a bi-level multi-period optimi-
zation programming for a micro-grid system operation manage-
ment under consideration of quasi-feed-in-tariff policy. Jebaraj et al.
[16] presented an optimal model for electricity allocation and sus-
tainable resource utilization in India. Based on predicted renewable
generation andmarket information, Chen and Garcia [17] developed
a generic methodology for the operations optimization of hybrid
energy systems. �Alvarez-Miranda et al. [18] proposed a novel
scenario-based approach for wind power generation management,
where dynamic characteristic of forecasting process and robust unit
commitment policies were taken into account. Yuan et al. [19]
developed a hybrid model for a short-term wind power fore-
casting based on the least squares support vector machine, which
was optimized using gravitational search algorithm.

In addition, in order to tackle the interrelated complexities
existing in the electric power system, especially the uncertainties
for renewable energy resources, a series of inexact optimization
approaches have been developed in recent years, that include
interval-parameter programming, stochastic mathematical pro-
gramming (e.g. two-stage stochastic programming, multi-stage
stochastic programming, stochastic robust programming, chance-
constraint programming), fuzzy mathematical programming, and
interacted methods [20e23]. Among these methods, interval two-
stage stochastic programming (ITSP) model, incorporated interval-
parameter programming (IPP) and two-stage stochastic program-
ming (TSP), is a potential approach for electric power planning and
receive much attention [24e26]. It can handle multiple un-
certainties expressed as discrete intervals and known probability
distributions in a model's both sides and achieve management
strategy adjustment after real events happened. Moreover, ITSP
method could provide an effective way for tackling decision prob-
lems, where synthetic analysis of different policy scenarios is
desired. For example, Chen et al. [27] proposed a two-stage inexact-
stochastic programming model for CO2-emission trading manage-
ment. However, in a coupled traditional and renewable power
generation system, the fluctuation of wind and solar power output
poses a grave threat to electric power dispatch, wherein power load
forecast is extremely expected [28]. In general, due to the lack of
long time sequenced climate and meteorological information, load
forecast are usually estimated by fuzzy information with different
confidence levels through analyzing large scale meteorology data.
In addition, forecast error would appear unavoidably in the fore-
casting process, and should be incorporated into generation
scheduling process by decision makers to reduce its effect. How-
ever, ITSPmethod could not adequately reflect those characteristics
of renewable power generation, and bring forecast errors into the
optimization model. The drawback would lead to the loss of vague
information as well as unreliable solutions when dealing with
electric power generation scheduling problems, especially in
traditional and renewable power generation system.

Fuzzy credibility constraints programming (FCCP) is a generally
accepted fuzzy mathematical programming method that can tackle
uncertain information identified as fuzzy sets within a measure of
confidence level [29]. It would not only help decision makers to
quantitatively evaluate trade-offs between economic objectives
and system risks existing in the dispatch scheduling process, but
also provide compromising schemes for managers regarding the
safety of fuzzy constraints with various credibility satisfaction level.
Especially, it is a novel method for reflecting the fuzziness of
forecast error in decision-making. FCCP had been successfully
applied in many real-world practices, which was mostly attribut-
able to its advantages in capturing the ambiguous uncertainties and
enlarging the uncertain decision space. For example, Ji et al. [30]
proposed a hybrid inexact stochastic-fuzzy chance-constrained
programming for pollutants and CO2 emissions management in a
regional micro-grid system over a one-day horizon. Rong and
Lahdelma [31] presented a fuzzy chance constrained linear pro-
gramming model for scrap charge optimization of steel production.
Based on integer fuzzy credibility constrained programming
method, Zhang et al. [32] advanced an inexact optimization model
for regional power system management. Nevertheless, FCCP
method has limitations in tackling uncertain parameters that exist
in the model's left-hand sides and coefficients, and reflecting the
random characteristics in electric power generation system. One
potential approach is to integrate ITSP and FCCP method within a
general optimization framework to handle these issues.

Therefore, the objective of this paper is to develop an inexact
two-stage stochastic fuzzy programming model for regional elec-
tric power system steady operation management considering pol-
lutants emission control, which will incorporate interval-
parameter programming, two-stage stochastic programming, and
fuzzy credibility constrained programming. It can effectively
address uncertainties expressed as interval parameters, probability
distributions, and fuzzy sets. In the model, the fluctuation for
renewable power output can be incarnated as the fuzziness of
forecast error by transforming the fuzzy credibility constraints into
their crisp equivalent forms. The model will be applied to a plan-
ning of power generation scheduling in regional electric power
system over a one-day horizon under consideration of air pollutant
control and renewable energy power applications. The modeling
results can help decision makers acquire multiple optimal alter-
natives and applicable solutions, and also gain a comprehensive
trade-off between system economy and reliability risk.
2. Methodology

2.1. Interval two-stage stochastic programming

Two-stage stochastic programming (TSP) is available for
handling problemswhere an analysis of different policy scenarios is
conceivable and uncertain coefficients are random with known
probability distributions. A TSP model can be described as follows
[33]:

min f ¼ CT1X þ
Xs
h¼1

phDT2Y (1a)

subject to:

ArX � Br; r2M;M ¼ 1;2; :::;m1 (1b)

AiX þ A
0
iY � ~wih; i2M;M ¼ 1;2; :::;m2; h ¼ 1;2; :::; s (1c)

xj � 0; xj2X; j ¼ 1;2; :::;n1 (1d)

yjh � 0; jjh2Y ; j ¼ 1;2; :::; n2;h ¼ 1;2; :::; s (1e)

where xj and yjh represent the first- and second-stage decision
variables, respectively; CT1X denotes the first-stage costs or
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benefits; h is the scenario of the random events happening; ph is
the probability levels; ~wih is the discrete values of randomvariables,
where h ¼ 1;2; :::; s and

P
ph ¼ 1;

Ps
h¼1phDT2Y is the expected

value of second-stage system penalties.
TSP model can effectively tackle probabilistic uncertainties in

the constraint's right-hand sides, and capture dynamic feature and
economic penalties expressed as recourse or corrective measures.
However, it is incapable of addressing independent uncertainties
existing in the model's left-hand sides. Meanwhile, interval-
parameter programming (IPP) can address uncertainties in the
model's left and right-hand sides and objective function without
being quantified as membership or distribution functions. This
leads to an interval two-stage stochastic programming (ITSP)
model as follows:

min f ± ¼ C±
T1
X± þ

Xs
h¼1

phD
±
T2
Y± (2a)

subject to:

A±
r X

± � B±r ; r2M;M ¼ 1;2; :::;m1 (2b)

A±
i X

± þ A±
0

i Y± � ~w±
ih; i2M;M ¼ 1;2; :::;m2; h ¼ 1;2; :::; s (2c)

x±j � 0; x±j 2X±; j ¼ 1;2; :::; n1 (2d)

y±jh � 0; y±jh2Y±; j ¼ 1;2; :::; n2; h ¼ 1;2; :::; s (2e)

2.2. Fuzzy credibility constrained program

Fuzzy credibility constrained programming (FCCP) is an alter-
native tool for dealing with problems where uncertainties are
expressed as fuzzy sets. It could enlarge decision space for man-
agers by means of not requiring the constraints in which the fuzzy
variables exist to be totally satisfied in a certain degree. A FCCP
model can be expressed as follows [34]:

min f ðx; xÞ (3a)

subject to:

Cr

8<
:

Xn
j¼1

gjðx; xÞ � 0; j ¼ 1;2; :::; n

9=
; � lj (3b)

x � 0 (3c)

where x is vector of decision variables; x denotes vector of fuzzy
variables; lj is the fuzzy confidence level; Crf,g represents the
credibility of the event f,g. Formula (3b) denotes that credibility of
satisfying gjðx; xÞ � 0 should be not less than level lj.

In FCCP, credibility constraints can be handled through credi-
bility measures defined by possibility measure and necessity
measure as shown in (4) and (5) [5,35].

Posfx � rg ¼ sup
u�r

mðuÞ (4)

Necfx � rg ¼ 1� Posfx> rg ¼ 1� sup
u> r

mðuÞ (5)

where x is a fuzzy variable with membership function m; Pos and
Nec represent the possibility measure and necessity measure,
respectively. The credibility measure Cr is an average of the possi-
bility measure and the necessity measure [30,32,and36]:

Crfx � rg ¼ 1
2
ðPosfx � rg þ Necfx � rgÞ (6)

In the hourly wind and solar power output forecast, there are
always errors in these forecasted values, which can be formulated
as follows [37]:

εw% ¼ Pw � P
0
w

P0
w

� 100% (7)

where εw denotes the percentage error in forecast, Pw is the actual
power output while P

0
w is the power forecast. In order to reflect the

degree of accuracy of errors, the membership function of forecast
error expressed as Cauchy distribution can be used, which is
depicted as follows [5]:

m ¼

8>>>><
>>>>:

1

1þ sðεw=EwþÞ2
; εw >0

1

1þ sðεw=Ew�Þ2
; εw � 0

(8)

where Ewþ is the average value of positive percentage error when
the actual power output is greater than the power forecast, Ew� is
the average value of negative percentage error when the actual load
is smaller than the forecast one; s denotes the weighting factor.
Then, based on the above models, the credibility measure of power
forecast can be expressed as follows:

Crfx � rg ¼

8>>>><
>>>>:

1� 1

2
h
1þ sðεw=EwþÞ2

i; εw >0

1

2
h
1þ sðεw=Ew�Þ2

i; εw � 0
(9)

Let gjðx; xÞ be replaced by hjðxÞ � xj, where xj denotes a fuzzy
variable, the necessary and sufficient condition of CrfPn

j¼1gjðx; xÞ �
0g � lj is that hjðxÞ � Klj , where Klj is described as follows [38]:

Klj ¼
(
sup

n
K
��K ¼ m�1�2lj�o lj <1=2

inf
n
K
��K ¼ m�1�2�1� lj

��o
lj � 1=2

(10)

Normally, an acceptable credibility level is not less than 0.5.
Thus, based on equation (10), for each 1> lj � 0:5, the following
equation can be acquired:

Klj ¼ jEw�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lj � 1

2sj
�
1� lj

�
s

(11)

Therefore, according to the above transformation, the model (3)
can be expressed as a crisp equivalent model:

min f ðx; xÞ (12a)

subject to:

hjðxÞ � jEw�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lj � 1

2sj
�
1� lj

�
s

(12b)

x � 0 (12c)
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2.3. Inexact two-stage stochastic fuzzy programming

Apparently, model (2) can efficiently address multiple un-
certainties presented as intervals and probability distributions.
Nevertheless, with regard to other parameters described by fuzzy
sets in the system constraints, it would be infeasible. Therefore, one
potential approach to reflect such complexities is to integrate FCCP
and ITSP within a general framework. This leads to an inexact two-
stage stochastic fuzzy credibility constrained programming (ITSFP)
model as follows:

min f ± ¼ C±
T1
X± þ

Xs
h¼1

phD
±
T2
Y± (13a)

subject to:

Cr
n
A±
r X

± � B
0±
r ð1þ xrÞ

o
� l±r ; r2M;M ¼ 1;2; :::;m1 (13b)

A±
i X

± þ A±
0

i Y± � ~w±
ih; i2M;M ¼ 1;2; :::;m2; h ¼ 1;2; :::; s

(13c)

x±j � 0; x±j 2X±; j ¼ 1;2; :::; n1 (13d)

y±jh � 0; y±jh2Y±; j ¼ 1;2; :::; n2; h ¼ 1;2; :::; s (13e)

where ~B
0±
r is the forecast value, xr is the percentage error in forecast,

l±r is the confidence level.
For model (13), if x±j are regarded as uncertain inputs, the

existing methods may be infeasible when dealing with inexact
linear programming problems. In this study, an optimized set of
target values can be identified by having mj in model (13).
Accordingly, let xj ¼ x�j þ mjDxj, where Dxj ¼ xþj � x�j and mj2½0;1�,
mj are decision variables and can be used to identify an optimized
set of target values x±j where related policy can be analyzed. The
detailed solution method for solving the ITSFP model is presented
in Appendix A.
3. Case study

3.1. Overview of the study area

Consider a hypothetical and representative case wherein elec-
tric power system in a regional micro-grid is responsible for
satisfying end-users’ requirements. Along with the exhaustion of
traditional fossil energy resources and aggravation of environ-
mental pollution problems, renewable energy sources would un-
doubtedly be the primary option for mitigating the contradiction
between electricity supply/demand and emission reduction goals.
In this system (as shown in Fig. 1), two conventional energy re-
sources (i.e., coal and natural gas) and two renewable energy re-
sources (i.e., wind and solar) are served with limited availabilities.
The regional electricity power supply include coal-fired power,
natural gas-fired power, wind power, and solar power with a re-
sidual capacity of 1.50 GW, 1.00 GW, 0.95 GW, and 0.75 GW,
respectively. Imported power from the main grid is available to
compensate supply shortage of regional power grid, when the
power-generation capacity cannot meet the electricity demand.
Moreover, a mass of environmental pollutants (e.g., sulfur dioxide
(SO2), nitrogen oxides (NOx), and particulate matter (PM)) would
be discharged and affect atmospheric environmental quality during
electricity generation process, which should be early controlled to
meet the stricter environmental standard.
In the electric power system, the problem can be formulated as
minimizing the cost of regional electric power system for hourly
power generation scheduling. Based on the power-generation ca-
pacity and load demand, day-ahead generation targets in different
power plants are pre-regulated. If the pre-regulated generation
targets can meet the real-time demand, the system will encounter
with the regular cost; on the contrary, if the targets are exceeded, it
will result in penalties on the excess cost from the extra power
generation and management. Besides, the system is fraught with
multiple uncertainties related to energy resource supply, electricity
generation, power load demand, and pollutants emission control, as
well as various economic and technical parameters (e.g., generation
targets, cost parameters, and emission rate). The complexities and
uncertainties could affect the generation scheduling and the asso-
ciated optimization processes, which should be comprehensively
considered by decision makers. Furthermore, due to the dynamic
features of wind and solar energy in accordance with the wind
speed and solar radiation, the power output of wind farm and
photovoltaic panels will fluctuate and be difficult to be obtained
precise values. The volatile and intermittent characteristics of wind
and solar power would pose serious challenges to power grid
dispatch, and impede large-scale wind and solar power to connect
to power grid. Moreover, in order to meet the increasingly envi-
ronmental requirements, decision makers should adopt a series of
measures to control pollutants emission in the systemmanagement.

Therefore, the study's task is to: (1) identify multiple complex-
ities and uncertainties existing in the regional electric power sys-
tem; (2) tackle the fuzzy problems of wind and solar power output;
(3) formulate optimal electricity generation scheduling for con-
ventional and renewable energy power conversion technologies
under different pollution reduction plans; and (4) generate decision
alternatives by analyzing the trade-off between economic objec-
tives, environmental requirements and system risks.
3.2. Model formulation

According to the above analysis, the developed inexact two-stage
stochastic fuzzy programming (ITSFP) method is suitable for
regional electric power system management. The method can
effectively reflect multiple uncertainties described as intervals,
probability distributions and fuzzy sets. Moreover, the model can be
helpful to handle the precision problems of wind and solar power
forecast by converting the fuzziness of power output into forecast
error. The objective of this study is to acquire alternative plans for
various power generation activities by minimizing the system cost
over a 24-h planning horizon. The system constraintsmainly involve
mass balance for conventional and renewable energy, pollution
emission limitations, electricity demand balance, and technical re-
strictions. Thus, the model can be formulated as follows:

f ± ¼
X2
k¼1

X24
t¼1

X3
h¼1

EC±
kt$

�
X±
kt þ pth$Q

±
kth

�
$CG±

kt þ
X4
k¼1

X24
t¼1

PV±
kt$X

±
kt

þ
X4
k¼1

X24
t¼1

X3
h¼1

pth$PP
±
kt$Q

±
kth þ

X24
t¼1

X3
h¼1

pth$IE
±
t $IP

±
th þ

X4
k¼1

�
X3
r¼1

X24
t¼1

CE±krt$X
±
kt$h

±
krt$EF

±
krt þ

X4
k¼1

X3
r¼1

X24
t¼1

�
X3
h¼1

pth$PE
±
krt$Q

±
kth$h

±
krt$EF

±
krt

(14a)

subject to:
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Fig. 1. The schematic of reginal electric power system under study.
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(1) Constraints for coal balance

�
X±
1t þ Q±

1th

�
$CG±

1t � UPC±
t ; ct; h (14b)
(2) Constraints for natural-gas balance

�
X±
2t þ Q±

2th

�
$CG±

2t � UPN±
t ; ct; h (14c)
(3) Constraint for wind power

Cr
n
X±
3t þ Q±

3th � PW
0
t$ð1þ xwÞ

o
� l±; ct; h (14d)
(4) Constraint for solar power

Cr
n
X±
4t þ Q±

4th � SW
0
t$ð1þ xsÞ

o
� l±; ct; h (14e)
(5) Constraint for electricity supply and demand balance

X4
k¼1

�
X±
kt þ Q±

kth

�þ IP±th � DM±
th; ct; h (14f)
(6) Constraints for electricity generation

RCk$ST
±
kt � X±

kt þ Q±
kth; ck; t; h (14g)

X±
kt � Q±

kth; ck; t; h (14h)
(7) Constraints for environment
X4
k¼1

�
X±
kt þ Q±

kth

�
$
�
1� h±krt

�
$EF±krt � ES±rt ; ct; r; h (14i)
(8) Nonnegative constraints

Q±
kth � 0; ck; t; h (14j)

The detailed nomenclatures for the variables and parameters
are presented in Appendix B.

3.3. Data collection and scenarios analysis

In the study, electric power generated from various power
conversion technologies in the region would be self-consumed.
Besides, wind and solar power output could be fully dispatched
without transmission loss. In addition, the study would not
consider the specific power prediction method, but adopt the
research results of forecast error according to the related references
[5,37]. Table 1 shows the potential power demands under different
scenarios in a typical working day of July in summer, which are
expressed as interval numbers with given probability levels. Wind
and solar power forecast values are shown in Fig. 2. Three scenarios
related to different environmental management policies are
designed. Scenario 1 means that the gross of pollutants emission
are confined with a certain quantity over the planning horizon.
Scenario 2 represents that the pollutants emission is to be miti-
gated by 10% based on scenario 1. Scenario 3 denotes the mitigation
level will be 15%.

4. Results analysis and discussion

Solutions of the proposed model are displayed under different
confidence levels (l ¼ 0.9, 0.8, 0.7, and 0.6) and three pollutants
emission scenarios. Table 2 presents the pre-designed power



Table 1
Original hourly load demand.

Electricity load demand (GWh) Demand level

L M H

0.2 0.55 0.25

t ¼ 1 [1.98,2.50] [2.23,2.98] [2.70,3.38]
t ¼ 2 [1.90,2.43] [2.13,2.94] [2.58,3.30]
t ¼ 3 [1.78,2.20] [2.03,2.68] [2.46,3.18]
t ¼ 4 [1.70,1.93] [1.96,2.43 [2.33,2.93]
t ¼ 5 [1.65,1.83] [1.85,2.29] [2.21,2.78]
t ¼ 6 [1.59,1.90] [1.81,2.35 [2.28,2.85]
t ¼ 7 [1.78,2.05] [2.00,2.53] [2.55,2.91]
t ¼ 8 [2.10,2.23] [2.38,2.76] [2.84,3.20]
t ¼ 9 [2.30,2.50] [2.60,3.00] [3.00,3.53]
t ¼ 10 [2.42,2.80] [2.73,3.28] [3.11,3.75]
t ¼ 11 [2.60,2.95] [2.91,3.40] [3.30,3.93]
t ¼ 12 [2.72,3.03] [3.05,3.49] [3.41,3.98]
t ¼ 13 [2.81,3.10] [3.13,3.58] [3.50,4.13]
t ¼ 14 [2.92,3.22] [3.22,3.73] [3.60,4.23]
t ¼ 15 [2.70,3.13] [3.14,3.66] [3.49,4.05]
t ¼ 16 [2.55,2.95] [2.96,3.43] [3.30,3.93]
t ¼ 17 [2.20,2.65] [2.60,3.16] [2.99,3.68]
t ¼ 18 [2.13,2.58] [2.45,3.01] [2.91,3.48]
t ¼ 19 [2.23,2.70] [2.55,3.15] [3.05,3.65]
t ¼ 20 [2.37,2.88] [2.68,3.36] [3.18,3.84]
t ¼ 21 [2.32,2.77] [2.64,3.22] [3.08,3.68]
t ¼ 22 [2.22,2.73] [2.53,3.19] [2.96,3.63]
t ¼ 23 [2.16,2.65] [2.44,3.12] [2.88,3.57]
t ¼ 24 [2.05,2.58] [2.33,3.03] [2.78,3.48]
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generation targets under different scenarios with l fixed as 0.9.
Generally, the optimized pre-regulated coal-fired power generation
would decrease as raising the mitigation levels; conversely, the
natural gas-fired generation would increase lightly. For example,
under scenario 1, the pre-regulated coal-fired power generation
would be 1.200, 1.329, and 1.220 GWh at 1:00, 14:00 and 24:00,
respectively; under scenario 3, it would be 1.130, 1.117, and
1.117 GWh accordingly. This is mainly because coal-fired power
possesses the characteristic of higher emission rate. Thus, the de-
cision makers would have to promise lower quantities in order to
meet emission reduction requirements. By contrast, natural gas is a
cleaner energy resource, and the pre-regulated natural gas-fired
power generation would rise from 0.480, 0.480, and 0.580 GWh
under scenario 1 to 0.554, 0.648, and 0.650 GWh under scenario
3 at 1:00, 14:00 and 24:00, respectively. At the meanwhile, due to
the feature of near-zero pollutants emission, the pre-regulated
wind and solar power generation would increase at certain times.
Taken wind power as an example, the pre-regulated power gen-
eration amount at 9:00 and 15:00 would be 0.298 and 0.583 GWh
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Fig. 2. Output forecast of wind
under scenario 1, and 0.325 and 0.680 GWh under scenario 3,
respectively. Though wind power and solar power hardly produce
air pollution compared with the conventional power generation,
they have higher operating cost. In the system, if all the energy
produced by wind or solar power fully used in the system, the total
system cost may be very high; this would lead to serious negative
side effects on the local economy. Therefore, when considering the
system objective, decision makers would have to synthetically
analyze the trade-off between the system cost and environmental
requirements, and the production of wind and solar power would
be used partly under disadvantageous situations.

Table 3 shows the excess power generation amount with
different l levels under scenario 1. If the pre-designed power
generation targets cannot satisfy end-users’ requirements, it would
lead to the deficit. It could be observed that the excess generation
quantities for coal-fired power, wind, and solar power would vary
under different electricity demand levels. For natural gas-fired
power, electricity shortage would occur when the load demand
level is high. In addition, with l level decreasing, the excess power
generation for wind and solar power would decrease simulta-
neously. For example, the excess solar power generation at 12:00
would be [0, 0.305], [0.204, 0.309], and [0.291, 0.309] GWh under
low, medium and high demand levels with l ¼ 0.9, respectively;
under l setting as 0.6, it would be [0, 0.196], 0.196, and 0.196 GWh,
correspondingly. The reason is that the lower confidence level
corresponds to a lower availability of solar energy resource, thus
the forecast output of solar power would be lower and excess po-
wer generation would be less accordingly. Unlike the situation for
renewable energy, the excess coal-fired power generationwould be
stable as confidence level increasing, indicating that the changes of
confidence levels wouldmake no difference to the excess coal-fired
power generation under different electricity demand levels. For
natural gas-fired power, the excess power generation would not
change obviously. For instance, under different electricity demand
levels, it would be 0, 0, and 0.214 GWh with l fixed as 0.9 at 16:00,
and 0, 0.098, and 0.214 GWh with l fixed as 0.6, respectively.

Fig. 3 shows the optimal power generation schemes for different
power conversion technologies under scenario 1 with l fixed as 0.8.
Due to the comparatively lower purchasing price and operation
cost, coal-fired power would play a significant role in power gen-
eration activities, whose optimized power generation quantity
would have a larger proportion in the total electricity supply.
Generally, the optimal coal-fired power generation in each hour
would show a stable trend. However, the amount of power gener-
ation at 6:00 is an exception, which would be relatively lower. This
is mainly because the load demand would be in its valley hour that
would not need amounts of electricity supply. For natural gas-fired
2 t=13 t=14 t=15 t=16 t=17 t=18 t=19 t=20 t=21 t=22 t=23 t=24

SW

power and solar power.



Table 2
Pre-designed hourly power generation targets under different scenarios ðl ¼ 0:9Þ.

Time (h) Optimized generation target Xkt opt(GWh)

Scenario 1 Scenario 2 Scenario 3

k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4

t ¼ 1 1.200 0.480 0.295 0 1.196 0.484 0.295 0 1.130 0.554 0.295 0
t ¼ 2 1.002 0.420 0.478 0 1.002 0.420 0.478 0 1.002 0.420 0.478 0
t ¼ 3 1.015 0.420 0.345 0 1.015 0.420 0.345 0 1.015 0.420 0.345 0
t ¼ 4 1.112 0.400 0.180 0 1.120 0.400 0.180 0 1.120 0.400 0.180 0
t ¼ 5 1.005 0.400 0.245 0 1.005 0.400 0.245 0 1.005 0.400 0.245 0
t ¼ 6 0.792 0.400 0.335 0.063 0.792 0.400 0.335 0.063 0.792 0.400 0.335 0.063
t ¼ 7 1.029 0.420 0.214 0.117 1.029 0.420 0.214 0.117 1.029 0.420 0.214 0.117
t ¼ 8 1.174 0.450 0.260 0.216 1.174 0.450 0.260 0.216 1.130 0.450 0.260 0.260
t ¼ 9 1.220 0.450 0.298 0.332 1.196 0.450 0.298 0.356 1.130 0.450 0.325 0.395
t ¼ 10 1.260 0.450 0.345 0.365 1.196 0.450 0.345 0.429 1.130 0.450 0.360 0.480
t ¼ 11 1.224 0.480 0.488 0.408 1.196 0.480 0.488 0.436 1.130 0.480 0.488 0.502
t ¼ 12 1.252 0.480 0.560 0.428 1.196 0.480 0.560 0.484 1.130 0.480 0.560 0.550
t ¼ 13 1.329 0.480 0.520 0.481 1.196 0.480 0.600 0.534 1.130 0.496 0.650 0.534
t ¼ 14 1.329 0.480 0.606 0.500 1.196 0.569 0.650 0.500 1.117 0.648 0.650 0.500
t ¼ 15 1.329 0.450 0.583 0.338 1.196 0.450 0.634 0.420 1.130 0.470 0.680 0.420
t ¼ 16 1.328 0.450 0.547 0.220 1.196 0.450 0.572 0.327 1.130 0.450 0.638 0.327
t ¼ 17 1.236 0.420 0.410 0.134 1.196 0.420 0.410 0.174 1.130 0.420 0.450 0.200
t ¼ 18 1.014 0.420 0.595 0.096 1.014 0.420 0.595 0.096 1.014 0.420 0.595 0.096
t ¼ 19 1.200 0.450 0.580 0 1.196 0.450 0.584 0 1.130 0.450 0.650 0
t ¼ 20 1.323 0.700 0.320 0 1.181 0.700 0.320 0 1.109 0.700 0.320 0
t ¼ 21 1.320 0.680 0.180 0 1.184 0.680 0.180 0 1.112 0.680 0.180 0
t ¼ 22 1.329 0.650 0.220 0 1.188 0.650 0.220 0 1.117 0.650 0.220 0
t ¼ 23 1.200 0.587 0.368 0 1.196 0.591 0.368 0 1.117 0.650 0.368 0
t ¼ 24 1.220 0.580 0.250 0 1.195 0.605 0.250 0 1.117 0.650 0.250 0

Table 3
Excess power generation quantities under different l levels (Scenario 1).

Time l ¼ 0:9 l ¼ 0:8 l ¼ 0:6

L M H L M H L M H

k ¼ 1 t ¼ 4 [0,0.230] [0.211,0.286] [0.209,0.278] [0,0.230] [0.211,0.286] [0.209,0.278] [0,0.230] [0.211,0.286] [0.209,0.278]
t ¼ 8 0 [0.157,0.232] [0.155,0.225] 0 [0.146,0.221] [0.144,0.209] 0 [0.146,0.221] [0.144,0.209]
t ¼ 12 0 [0.078,0.148] [0.078,0.148] [0,0.054] [0.078,0.148] [0.077,0.148] [0,0.109] [0.078,0.148] [0.077,0.125]
t ¼ 16 [0,0.078] [0.003,0.078] [0.001,0.700] [0,0.078] [0.003,0.078] [0.001,0.070] [0,0.078] [0.002,0.078] [0.001,0.070]
t ¼ 20 [0,0.074] [0,0.074] [0,0.074] [0,0.074] [0,0.074] [0,0.074] [0,0.074] [0,0.074] [0,0.074]
t ¼ 24 [0,0.185] [0.109,0.178] [0.109,0.178] [0,0.185] [0.109,0.178] [0.109,0.178] [0,0.185] [0.109,0.178] [0.109,0.178]

k ¼ 2 t ¼ 4 0 0 0.220 0 0 0.222 0 0 0.222
t ¼ 8 0 0 0.165 0 0 0.187 0 0 0.187
t ¼ 12 0 0 0 0 0 0.110 0 0 0.118
t ¼ 16 0 0 0.214 0 0.002 0.214 0 0.098 0.214
t ¼ 20 0 0 0 0 0 0 0 0 0
t ¼ 24 0 0.084 0.084 0 0.084 0.084 0 0.084 0.084

k ¼ 3 t ¼ 4 0 [0.049,0.126] 0.126 0 [0.049,0.102] 0.102 0 [0.049,0.079] 0.079
t ¼ 8 0 [0,0.199] [0.198,0.199] 0 [0,0.162] [0.139,0.162] 0 [0,0.128] 0.128
t ¼ 12 0 [0,0.313] [0.219,0.322] 0 [0,0.252] [0.211,0.252] 0 [0.056,0.186] 0.186
t ¼ 16 [0,0.124] [0.210,0.310] 0.310 [0,0.158] 0.242 0.242 0 0.178 0.178
t ¼ 20 [0.022,0.087] 0.087 0.087 [0.022,0.055] 0.055 0.055 0.022 0.024 0.024
t ¼ 24 [0,0.068] 0.068 0.068 [0,0.042] 0.042 0.042 0 0.186 0.186

k ¼ 4 t ¼ 4 0 0 0 [0,0.130] [0,0.193] [0,0.193] 0 0 0
t ¼ 8 [0,0.130] [0,0.216] [0.117,0.216] [0,0.106] [0,0.106] 0.106 [0,0.088] [0,0.088] 0.088
t ¼ 12 [0,0.305] [0.204,0.309] [0.291,0.309] [0,0.251] [0.203,0.251] [0.236,0.251] [0,0.196] 0.196 0.196
t ¼ 16 [0,0.202] 0.202 0.202 [0,0.169] 0.169 0.169 [0,0.137] 0.137 0.137
t ¼ 20 0 0 0 0 0 0 0 0 0
t ¼ 24 0 0 0 0 0 0 0 0 0
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power, the power generation would maintain at a higher level
during 20:00e24:00. The power curves of wind and solar power
would fluctuate significantly over the planning horizon attributed
to the influence of weather condition (e.g., wind speed and solar
radiation), which are shown in Fig. 2. Moreover, as presented in
Fig. 3 and Table 1, wind and solar power output could partly match
the peak hours' load demand during the whole planning horizon.
With regard to the night load peak, it would be mostly met by coal-
fired power and natural gas-fired power. For example, at 20:00, the
amount of coal-fired power, natural gas-fired power, wind and
solar power generation would be [1.323, 1.398], 0.700, [0.342,
0.375], and 0 GWh under the low demand level, respectively.

Fig. 4 displays the optimized power generation schemes of wind
power with different l levels under scenario 1. As shown in Fig. 4,
during 4:00 to 8:00 and 20:00 to 24:00, the amount of wind power
generation would be relatively lower. Meanwhile, the major gen-
eration of wind power would be during 12:00 to18:00, which
would be consistent with the forecasted value of wind power
output. Taken the high demand level as an example, when l is fixed
as 0.9, the wind power generation at 4:00,12:00, and 18:00 would
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Fig. 3. Optimized power generation with l ¼ 0:8 under scenario 1.
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be 0.306, [0.863, 0.882], and 0.939 GWh, respectively. In general, as
l values increasing, wind power output would rise up to some
extent. For instance, under the low demand level, the wind power
generation at 22:00 would be [0.236, 0.238], [0.236, 0.247], [0.236,
0.259], and [0.236, 0.281] GWh, when l is 0.6 0.7, 0.8, and 0.9,
respectively; under the high demand level, it would correspond to
0.238, 0.279, 0.292, and 0.318 GWh, respectively. This could be
explained by the reason that as the confidence level l values
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Fig. 4. Optimized wind power generation with different l levels under scenario 1.
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increasing, the availability of wind energy resources related to the
coefficient Kl as mentioned in the proposed model would increase
and be sufficient, resulting in the increment of wind power output.
Fig. 5 shows the solutions of conventional conversion technol-
ogies generation schemes with l setting as 0.6 under scenarios 2
and 3. In general, the electricity generation for conventional



0.7

0.9

1.1

1.3

L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H

t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14 t = 16 t = 18 t = 20 t = 22 t = 24

Po
w

er
ge

ne
ra

tio
n

(G
W

h)
(a) k=1, scenario 2

lower bound upper bound

0.7

0.9

1.1

1.3

L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H

t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14 t = 16 t = 18 t = 20 t = 22 t = 24

Po
w

er
ge

ne
ra

tio
n

(G
W

h)

(b) k=1, scenario 3

lower bound upper bound

0.3

0.4

0.5

0.6

0.7

0.8

L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H

t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14 t = 16 t = 18 t = 20 t = 22 t = 24

Po
w

er
ge

ne
ra

tio
n

(G
W

h)

(c) k=2, scenario 2

lower bound upper bound

0.3

0.4

0.5

0.6

0.7

0.8

L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H

t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14 t = 16 t = 18 t = 20 t = 22 t = 24

Po
w

er
ge

ne
ra

tio
n

(G
W

h)

(d) k=2, scenario 3

lower bound upper bound

Fig. 5. Traditional generation schemes with l ¼ 0:6 under scenarios 2 and 3.
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conversion technologies would change as the variation of emission
reduction goals. Coal-fired power generation would decrease
gradually as the increment of mitigation level under different de-
mand levels. For example, at 8:00, under scenario 2, the coal-fired
power generation would be 1.185, [1.197, 1.265], and [1.196, 1.255]
GWh under the three demand levels, respectively; under scenario
3, the related coal-fired power generation would be [1.130, 1.154],
[1.130, 1.194], and [1.130, 1.185] GWh, respectively. Due to a higher
pollutant emission rate, when more strict requirements in envi-
ronmental standard must be realized, the coal-fired power
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generation would be reduced. Meanwhile, natural gas-fired power
generation would fluctuate as the constraints of environmental
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Fig. 6. Output of solar power generation w
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Fig. 7. Optimized amount of imported power
protection are added. Taken high demand level as an example, at
10:00, the amount of natural gas-fired power generation would
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decrease, being 0.591 GWh under scenario 2 and 0.558 GWh under
scenario 3; while at 14:00, natural gas-fired power generation
would increase from 0.597 GWh under scenario 2 to 0.647 GWh
under scenario 3.

Fig. 6 presents the output of solar power generation under
scenarios 2 and 3 as l fixed as 0.6 during the planning periods. The
maximum output of solar power would be at 12:00 with the value
of [0.484, 0.624], 0.624, and 0.624 GWh under low, medium, and
high demand level in scenario 2, and [0.55, 0.624], 0.624, and
0.624 GWh in scenario 3, correspondingly. Compared with the
conventional power conversion technologies, the renewable en-
ergy power generation would increase to a certain degree as the
mitigation level increasing. For example, under low demand level,
the solar power generation at 8:00 and 10:00 would be [0.205,
0.335] and [0.429, 0.530] GWh under scenario 2, and [0.260, 0.366]
and [0.480, 0.530] GWh under scenario 3, respectively. However,
the solar power output would be stable when electricity demand
levels and environmental requirements reach to a certain level. For
instance, at 16:00, solar power generationwould be all stabilized at
0.357 GWh for the medium and high demand level with the miti-
gation level increasing. The main reason is that the solar power
generation would reach to its upper generating capacity limitation
under scenario 2; therefore, there would be no change with the
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Fig. 8. System cost under di
variation of different environmental objectives. In general, as l
value decreasing, the actual solar power output would be more and
more close to its forecasted value. The results simultaneously
illustrated that as the conference level decreasing, the failure risk of
solar power forecasting would be lessened and the associated
system feasibility would be enhanced. If the decision makers
possess a risk-averse attitude, a lower l value would be chosen.

Fig. 7 shows the optimized imported electricity schemes under
different scenarios as l fixed as 0.7. When the total amount of power
generation from different power conversion technologies cannot
meet the load demand in the region, it would be necessary to import
electricity from themain grid. Generally, with the increasing demand
level, imported electricity would be employed, reflecting a signifi-
cant increasing tendency. For example, at 14:00, under scenario 1,
the imported electricity amount would be [0, 0.065], [0, 0.439], and
[0.339, 0.900] GWh for the three levels, respectively. In addition,
imported electricity would increase significantly coupled with the
improvement of mitigation level in each demand level. Taken high
demand level as an example, at 2:00, the amount of imported
electricity would be [0.085, 0.735], [0.270, 0.928], and [0.363, 1.023]
GWh under scenario 1 to 3, which would be mainly attributed to the
drop of conventional energy power generation confined with a
certain level as the improvement of environmental requirements. As
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displayed in Fig. 7, during 20:00 to 24:00, imported electricity
amount would be relatively higher; and this mostly might be due to
the insufficient of renewable power generation.

The expected system cost with different confidence levels under
three scenarios is shown in Fig. 8. The results demonstrated that the
objective function value would rise up slightly as the confidence
level decreasing. For example, under scenario 1, the expected system
cost would be RMB¥ [21.648, 31.827] � 106, RMB¥ [21.691,
31.955] � 106, RMB¥ [21.719, 32.023] � 106, RMB¥ [21.742,
32.078]� 106 with l setting as 0.9, 0.8, 0.7, and 0.6, respectively. It is
illustrated that there exists a trade-off between system economy
and risk in the electric power systemmanagement, which should be
evaluated by decision makers. In general, a lower l level meaning a
lower availability of renewable energy resources, would result in a
lower deviation to the output forecast of renewable energy power as
well as a higher system cost; conversely, vice versa. Meanwhile, as
the l decreasing, the system risk would be decreased and system
reliability would be improved. In addition, the system cost would
increase as the constraints of emission reduction are enforced. For
example, when l is equal to 0.8, the expected system cost would be
RMB¥ [21.691, 31.955]� 106, RMB¥ [22.067, 32.333]� 106, and RMB¥
[22.292, 32.551] � 106 under scenario 1 to 3, respectively. It is
mainly because that as the mitigation level rising up, the amount of
conventional power generationwould be reduced; as a result, more
imported electricity would be purchased. If the decision makers
possess a risk-taker attitude towards a lower system cost, the
environmental regulations might be broke. Therefore, the decision
makers should make a choice between a lower cost related to a
more optimistic and flexible scheme and a higher cost corre-
sponding to a more conservative and reliable plan.

The study problem can be solved through an interval two-stage
stochastic programming method (ITSP) as well if the model would
not take the fluctuation of power output into consideration and the
constraints should be totally satisfied (i.e. l ¼ 1). The objective
function solutions of ITSP is RMB¥ [21.783, 33.274] � 106, which is
higher than that of ITSFP. The result demonstrated that the man-
ager would choose a lower system risk and more conservative
generation scheduling. Compared with the single results of ITSP, it
is indicated that the ITSFP method can provide multiple decision
alternatives for decision makers. In the process of power dispatch,
the decision makers can choose the confidence level according to
the actual situation and their willingness, and obtain different de-
cision making combining the system economy and risk. Further-
more, the ITSFP has advantages over the ITSP in sufficiently
reflecting the fuzziness of power output and consider power fore-
cast errors.

5. Conclusion

In this study, an inexact two-stage stochastic fuzzy program-
ming model was developed for regional electric power system
management under uncertainty. The proposed model was formu-
lated through incorporating two-stage stochastic programming,
and fuzzy credibility constrained programming into a general
interval-parameter programming optimization framework. It can
address multiple formats of uncertainties expressed as intervals,
probability distributions, and fuzzy sets in both objective function
and system constraints. The model is effective in providing a link-
age between pre-regulated electric power generation schedule and
the relevant economic implications, and generating more reason-
able decision alternatives that would be helpful for decisionmakers
to deal with various system conditions when considering economic
and environmental policies. Besides, the notion of fuzzy risk can be
sufficiently represented by the fuzzy credibility index. Particularly,
based on this method, the fuzziness of forecast error could be
effectively reflected through introducing the crisp equivalent
equation of fuzzy chance constraints.

The performance of the developed method was then applied to
a case of short-term regional electric power generation scheduling
considering the fluctuant real-time renewable energy output and
air pollutant control. Three scenarios related to different pollutants
emission control policies and several credibility levels corre-
sponding to decision makers' willingness were considered. The
power generation schemes, imported electricity, as well as system
cost were analyzed. The obtained results indicated that the pro-
posed model could effectively capture the variability of renewable
energy and permit in-depth analyses for the trade-off between
economic objective and system risk under different confidence
levels. The actual output of renewable energy technology would be
closer to the forecasted values with the decrease of confidence
levels. The lower confidence level with respect to the lower avail-
ability of renewable energy resources would lead to a higher sys-
tem cost and a lower risk of violating the system security.
Meanwhile, the lower mitigation level of total emission permit, the
lower system cost. The results are valuable for managers to make a
compromise among the economic cost, environmental re-
quirements, and system risk.
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Appendix A. Solution method

Based on an interactive algorithm [39], model (5) can be
transformed into two deterministic submodels corresponding to
the lower and upper bounds of the desired objective-function
value, respectively. Because the objective is to minimize system
cost, the submodel for f� corresponding to the lower-bound
objective-function can be firstly formulated as follows:

min f� ¼
Xk1
j¼1

c�j
�
x�j þ mjDxj
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x�j þ mjDxj � 0; j ¼ 1;2; :::; k1 (A.1d)

y�jh � 0; j ¼ 1;2; :::;n2 (A.1e)

yþjh � 0; j ¼ k2 þ 1; k2 þ 2; :::;n2 (A.1f)

where mj, y�jh and yþjh are decision variables; y�jh; j ¼ 1;2; :::; k2 and
h ¼ 1;2; :::; s are random variables with positive coefficients in the
objective function; yþjh; j ¼ k2 þ 1; k2 þ 2; :::; n2 and h ¼ 1;2; :::; s are
random variables with negative coefficients. Solutions of
y�jh optðj ¼ 1;2; :::; k2Þ, yþjh optðj ¼ k2 þ 1; k2 þ 2; :::;n2Þ and mjopt can
be obtained through submodel (A.1). The optimized first-stage
variables are xjopt ¼ x�j þ mjoptDxjðj ¼ 1;2; :::; n1Þ. Based on the
above solutions, the submodel for fþ corresponding to the upper-
bound objective-function value is:

min fþ ¼
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yþjh � y�jhopt ; j ¼ 1;2; :::; k2;ch (A.2d)

yþjhopt � y�jh; j ¼ k2 þ 1; k2 þ 2; :::; n2; ch (A.2e)

Solutions of yþjh optðj ¼ 1;2;…; k2Þ and
y�jh optðj ¼ k2 þ 1; k2 þ 2;…;n2Þ can be obtained through submodel
(A.2). Thus, we can obtain the interval solutions for model as
follows:

xjopt ¼ x�j þ mjoptDxj; cj (A.3a)

y±khopt ¼
h
y�khopt ; y

þ
khopt

i
; cj;h (A.3b)

f ±opt ¼
h
f�j opt ; f

þ
j opt

i
(A.3c)
Appendix B. Nomenclatures for parameters and variables

k type of electricity conversion technologies, k ¼ 1 for coal-
fired power, k ¼ 2 for natural gas-fired power, k ¼ 3 for
wind power, k ¼ 4 for solar power

h the power load demand level, h ¼ 1 for low demand level,
h ¼ 2 for medium demand level, h ¼ 3 for high demand
level
r type of pollutant, r ¼ 1 for SO2, r ¼ 2 for NOX, r ¼ 3 for
particulate matter (PM)

t planning period, t ¼ 1;2; :::; 24

Decision variables
X±
kt predefined electricity generation by technology k in

period t (GWh)
Q±
kth excess electricity generation by technology k in scenario h

during period t(GWh)
IP±th amount of imported power in scenario h during period t

(GWh)

Parameters
EC±

kt energy price for technology k in period t (RMB¥103/PJ)
PV±

kt operation cost of technology k for pre-regulated
electricity generation in period t (RMB¥103/GWh)

PP±kt operation cost of technology k for excess electricity
generation in period t(RMB¥103/GWh)

pth probability of occurrence for scenario h in period t
IE±t power purchase price (RMB¥103/GWh)
CE±krt removal cost of pollutant r from technology k in period t

(RMB¥103/tonne)
PE±krt penalty cost of excess pollutant r from technology k in

period t(RMB¥103/tonne)
EF±krt emission intensity of pollutant r from power generation

technology k in period t (tonne/GWh)
UPC±

t coal energy resource limit in period t (PJ)
UPN±

t natural gas energy resource limit in period t (PJ)
PW

0
t wind power output forecast during period t (GW)

SW
0
t solar power output forecast during period t (GW)

xw percentage error of wind power in forecast
xs percentage error of solar power in forecast
l± the confidence level
DM±

th the hourly load demand in scenario h during period t
(GWh)

h±krt average removal efficiency of pollutant r for power
conversion technology k in period t

CG±
kt the conversion efficiency of power generation technology

k in period t (PJ/GWh)
RCk residual capacity for power conversion technology k (GW)
ST±kt operation time of power generation technology k in

period t (h)
ES±rt allowance amount of pollutant r emission in period t

(tonne)

References

[1] Kang J, Yuan J, Hu Z, Xu Y. Review on wind power development and relevant
policies in China during the 11th Five-Year-Plan period. Renew Sustain Energy
Rev 2012;16:1907e15. http://dx.doi.org/10.1016/j.rser.2012.01.031.

[2] Mandal P, Zareipour H, Rosehart WD. Forecasting aggregated wind power
production of multiple wind farms using hybrid wavelet-PSO-NNs. Int J En-
ergy Res 2014;38(13):1654e66. http://dx.doi.org/10.1002/er.3171.

[3] Graditi G, Di Silvestre ML, Gallea R, et al. Heuristic-based shiftable loads
optimal management in smart micro-grids. IEEE Trans Ind Inf 2015;11(1):
271e80. http://dx.doi.org/10.1109/TII.2014.2331000.

[4] Yuan X, Chen C, Yuan Y, et al. Short-term wind power prediction based on
LSSVMeGSA model. Energy Convers Manag 2015;101:393e401. http://
dx.doi.org/10.1016/j.enconman.2015.05.065.

[5] Zhang N, Hu Z, Han X, et al. A fuzzy chance-constrained program for unit
commitment problem considering demand response, electric vehicle and
wind power. Int J Electr Power Energy Syst 2015;65:201e9. http://dx.doi.org/
10.1016/j.ijepes.2014.10.005.

[6] Heinricha G, Howells M, Bassona L, Petrie J. Electricity supply industry
modelling for multiple objectives under demand growth uncertainty. Energy
2007;32:2210e29. http://dx.doi.org/10.1016/j.energy.2007.05.007.

[7] Milan C, Bojesen C, Nielsen MP. A cost optimization model for 100% renewable
residential energy supply systems. Energy 2012;48(1):118e27. http://
dx.doi.org/10.1016/j.energy.2012.05.034.

[8] Li YP, Huang GH. A stochastic-fuzzy programming model with soften

http://dx.doi.org/10.1016/j.rser.2012.01.031
http://dx.doi.org/10.1002/er.3171
http://dx.doi.org/10.1109/TII.2014.2331000
http://dx.doi.org/10.1016/j.enconman.2015.05.065
http://dx.doi.org/10.1016/j.enconman.2015.05.065
http://dx.doi.org/10.1016/j.ijepes.2014.10.005
http://dx.doi.org/10.1016/j.ijepes.2014.10.005
http://dx.doi.org/10.1016/j.energy.2007.05.007
http://dx.doi.org/10.1016/j.energy.2012.05.034
http://dx.doi.org/10.1016/j.energy.2012.05.034


J.L. Zhen et al. / Energy 135 (2017) 195e209 209
constraints for electricity generation planning with greenhouse-gas abate-
ment. Int J Energy Res 2013;37(8):843e56. http://dx.doi.org/10.1002/er.2885.

[9] Trianni A, Cagno E, Donatis AD. A framework to characterize energy efficiency
measures. Appl Energy 2014;118:207e20. http://dx.doi.org/10.1016/
j.apenergy.2013.12.042.

[10] Hu Q, Huang GH, Cai YP, Sun W. Planning of electric power generation sys-
tems under multiple uncertainties and constraint-violation levels. J Environ
Inf 2014;23(1):55e64. http://dx.doi.org/10.3808/jei.201400257.

[11] Moura PS, de Almeida AT. Multi-objective optimization of a mixed renewable
system with demand-side management. Renew Sust Energy Rev 2010;14(5):
1461e8. http://dx.doi.org/10.1016/j.rser.2010.01.004.

[12] Considine T, Larson DF. Short term electric production technology switching
under carbon cap and trade. Energies 2012;5(10):4165e85. http://dx.doi.org/
10.3390/en5104165.

[13] Ippolito MG, Di Silvestre ML, Sanseverino ER, et al. Multi-objective optimized
management of electrical energy storage systems in an islanded network with
renewable energy sources under different design scenarios. Energy 2014;64:
648e62. http://dx.doi.org/10.1016/j.energy.2013.11.065.

[14] Guo CX, Bai YH, Zheng X, et al. Optimal generation dispatch with renewable
energy embedded using multiple objectives. Int J Electr Power Energy Syst
2012;42(1):440e7. http://dx.doi.org/10.1016/j.ijepes.2012.03.047.

[15] Taha AF, Hachem NA, Panchal JH. A quasi-feed-in-tariff policy formulation in
micro-grids: a bi-level multi-period approach. Energy Policy 2014;71:63e75.
http://dx.doi.org/10.1016/j.enpol.2014.04.014.

[16] Jebaraj S, Iniyan S, Goic R. An optimal electricity allocation model for sus-
tainable resource use in India. Int J Energy Res 2013;37(8):923e35. http://
dx.doi.org/10.1002/er.2896.

[17] Chen J, Garcia HE. Economic optimization of operations for hybrid energy
systems under variable markets. Appl Energy 2016;177:11e24. http://
dx.doi.org/10.1016/j.apenergy.2016.05.056.

[18] �Alvarez-Miranda E, Campos-Vald�es C, Rahmann C. Two-stage robust UC
including a novel scenario-based uncertainty model for wind power appli-
cations. Energy Convers Manag 2015;101:94e105. http://dx.doi.org/10.1016/
j.enconman.2015.05.039.

[19] Yuan X, Chen C, Yuan Y, et al. Short-term wind power prediction based on
LSSVMeGSA model. Energy Convers Manag 2015;101:393e401. http://
dx.doi.org/10.1016/j.enconman.2015.05.065.

[20] Li W, Liu SX, Fu ZH, Shi HD. An interval multistage programming with fuzzy
probability distribution for regional electric supply-environmental manage-
ment. J Energy Resour Technol 2015;137(6):11. http://dx.doi.org/10.1115/
1.4030844.

[21] Xie YL, Huang GH, Li W, Ji L. Carbon and air pollutants constrained energy
planning for clean power generation with a robust optimization model-a case
study of Jining City, China. Appl Energy 2014;136:150e67. http://dx.doi.org/
10.1016/j.apenergy.2014.09.015.

[22] Pazouki S, Haghifam MR, Moser A. Uncertainty modeling in optimal operation
of energy hub in presence of wind, storage and demand response. Int J Electr
Power Energy Syst 2014;61:335e45. http://dx.doi.org/10.1016/
j.ijepes.2014.03.038.

[23] Xue GT, Zhang Y, Liu YJ. Multi-objective optimization of a micro-grid
considering load and wind generation uncertainties. Int Rev Electr Eng
2012;7(6):6225e34.
[24] Nurnberg R, Romisch W. A two-stage planning model for power scheduling in

a hydro-thermal system under uncertainty. Optim Eng 2002;3:355e78.
http://dx.doi.org/10.1023/A:1021531823935.

[25] van der Weijde AH, Hobbs BF. The economics of planning electricity trans-
mission to accommodate renewables: using two-stage optimization to eval-
uate flexibility and the cost of disregarding uncertainty. Energy Econom
2012;34:2089e101. http://dx.doi.org/10.1016/j.eneco.2012.02.015.

[26] Beraldi P, Conforti D, Violi A. A two-stage stochastic programming model for
electric energy producers. Comput Oper Res 2008;35:3360e70. http://
dx.doi.org/10.1016/j.cor.2007.03.008.

[27] Chen WT, Li YP, Huang GH, Chen X. A two-stage inexact-stochastic pro-
gramming model for planning carbon dioxide emission trading under un-
certainty. Appl Energy 2010;87(3):1033e47. http://dx.doi.org/10.1016/
j.apenergy.2009.09.016.

[28] Blonbou R, Monjoly S, Dorville JF. An adaptive short-term prediction scheme
for wind energy storage management. Energy Convers Manag 2011;52:
2412e6. http://dx.doi.org/10.1016/j.enconman.2011.01.013.

[29] Dubois D, Prade H. When upper probabilities are possibility measures. Fuzzy
Sets Syst 1992;49(1):65e74. http://dx.doi.org/10.1016/0165-0114(92)90110-
P.

[30] Ji L, Niu DX, Xu M, et al. An optimization model for regional micro-grid system
management based on hybrid inexact stochastic-fuzzy chance-constrained
programming. Int J Electr Power Energy Syst 2015;64:1025e39. http://
dx.doi.org/10.1016/j.ijepes.2014.08.014.

[31] Rong A, Lahdelma R. Fuzzy chance constrained linear programming model for
optimizing the scrap charge in steel production. Eur J Oper Res 2008;186(3):
953e64. http://dx.doi.org/10.1016/j.ejor.2007.02.017.

[32] Zhang YM, Huang GH, Lin QG, Lu HW. Integer fuzzy credibility constrained
programming for power system management. Energy 2012;38:398e405.
http://dx.doi.org/10.1016/j.energy.2011.11.035.

[33] Birge JR, Louveaux FV. Introduction to stochastic programming. New York:
Springer; 1997.

[34] Zhao RQ, Liu BD. Standby redundancy optimization problems with fuzzy life
times. Comput Ind Eng 2005;49(2):318e38. http://dx.doi.org/10.1016/
j.cie.2005.03.003.

[35] Dubois D, Prade H. Ranking fuzzy numbers in the setting of possibility theory.
Inf Sci 1983;30:183e224. http://dx.doi.org/10.1016/0020-0255(83)90025-7.

[36] Liu B, Liu YK. Expected value of fuzzy variable and fuzzy expected value
models. IEEE Trans Fuzzy Syst 2002;10:445e50. http://dx.doi.org/10.1109/
TFUZZ.2002.800692.

[37] Su CC, Hsu YY. Fuzzy dynamic programming: an application to unit
commitment. IEEE Trans Power Syst 1991;6(3):1231e7. http://dx.doi.org/
10.1109/59.119271.

[38] Ai X, Liu X, Sun C. A fuzzy chance constrained decision model for unit
commitment of power grid containing large-scale wind farm. Power Syst
Technol 2011;35(12):202e7.

[39] Huang GH, Baetz BW, Patry GG. An interval linear programming approach for
municipal solid waste management planning under uncertainty. Civ Eng En-
viron Syst 1992;9:319e35. http://dx.doi.org/10.1080/02630259208970657.

http://dx.doi.org/10.1002/er.2885
http://dx.doi.org/10.1016/j.apenergy.2013.12.042
http://dx.doi.org/10.1016/j.apenergy.2013.12.042
http://dx.doi.org/10.3808/jei.201400257
http://dx.doi.org/10.1016/j.rser.2010.01.004
http://dx.doi.org/10.3390/en5104165
http://dx.doi.org/10.3390/en5104165
http://dx.doi.org/10.1016/j.energy.2013.11.065
http://dx.doi.org/10.1016/j.ijepes.2012.03.047
http://dx.doi.org/10.1016/j.enpol.2014.04.014
http://dx.doi.org/10.1002/er.2896
http://dx.doi.org/10.1002/er.2896
http://dx.doi.org/10.1016/j.apenergy.2016.05.056
http://dx.doi.org/10.1016/j.apenergy.2016.05.056
http://dx.doi.org/10.1016/j.enconman.2015.05.039
http://dx.doi.org/10.1016/j.enconman.2015.05.039
http://dx.doi.org/10.1016/j.enconman.2015.05.065
http://dx.doi.org/10.1016/j.enconman.2015.05.065
http://dx.doi.org/10.1115/1.4030844
http://dx.doi.org/10.1115/1.4030844
http://dx.doi.org/10.1016/j.apenergy.2014.09.015
http://dx.doi.org/10.1016/j.apenergy.2014.09.015
http://dx.doi.org/10.1016/j.ijepes.2014.03.038
http://dx.doi.org/10.1016/j.ijepes.2014.03.038
http://refhub.elsevier.com/S0360-5442(17)31047-2/sref23
http://refhub.elsevier.com/S0360-5442(17)31047-2/sref23
http://refhub.elsevier.com/S0360-5442(17)31047-2/sref23
http://refhub.elsevier.com/S0360-5442(17)31047-2/sref23
http://dx.doi.org/10.1023/A:1021531823935
http://dx.doi.org/10.1016/j.eneco.2012.02.015
http://dx.doi.org/10.1016/j.cor.2007.03.008
http://dx.doi.org/10.1016/j.cor.2007.03.008
http://dx.doi.org/10.1016/j.apenergy.2009.09.016
http://dx.doi.org/10.1016/j.apenergy.2009.09.016
http://dx.doi.org/10.1016/j.enconman.2011.01.013
http://dx.doi.org/10.1016/0165-0114(92)90110-P
http://dx.doi.org/10.1016/0165-0114(92)90110-P
http://dx.doi.org/10.1016/j.ijepes.2014.08.014
http://dx.doi.org/10.1016/j.ijepes.2014.08.014
http://dx.doi.org/10.1016/j.ejor.2007.02.017
http://dx.doi.org/10.1016/j.energy.2011.11.035
http://refhub.elsevier.com/S0360-5442(17)31047-2/sref33
http://refhub.elsevier.com/S0360-5442(17)31047-2/sref33
http://dx.doi.org/10.1016/j.cie.2005.03.003
http://dx.doi.org/10.1016/j.cie.2005.03.003
http://dx.doi.org/10.1016/0020-0255(83)90025-7
http://dx.doi.org/10.1109/TFUZZ.2002.800692
http://dx.doi.org/10.1109/TFUZZ.2002.800692
http://dx.doi.org/10.1109/59.119271
http://dx.doi.org/10.1109/59.119271
http://refhub.elsevier.com/S0360-5442(17)31047-2/sref38
http://refhub.elsevier.com/S0360-5442(17)31047-2/sref38
http://refhub.elsevier.com/S0360-5442(17)31047-2/sref38
http://refhub.elsevier.com/S0360-5442(17)31047-2/sref38
http://dx.doi.org/10.1080/02630259208970657

	An inexact optimization model for regional electric system steady operation management considering integrated renewable res ...
	1. Introduction
	2. Methodology
	2.1. Interval two-stage stochastic programming
	2.2. Fuzzy credibility constrained program
	2.3. Inexact two-stage stochastic fuzzy programming

	3. Case study
	3.1. Overview of the study area
	3.2. Model formulation
	3.3. Data collection and scenarios analysis

	4. Results analysis and discussion
	5. Conclusion
	Acknowledgements
	Appendix A. Solution method
	Appendix B. Nomenclatures for parameters and variables
	References


