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A B S T R A C T

Deregulated electricity markets are expected to provide affordable electricity for consumers through promoting
competition. Yet, the results do not always fulfill the expectations. The regulator's market-clearing mechanism is
a strategic choice that may affect the level of competition in the market. We conceive of the market-clearing
mechanism as composed of two components: pricing rules and rationing policies. We investigate the strategic
behavior of power generation companies under different market-clearing mechanisms using an agent-based
simulation model which integrates a game-theoretical understanding of the auction mechanism in the
electricity market and generation companies' learning mechanism. Results of our simulation experiments are
presented using various case studies representing different market settings. The market in simulations is
observed to converge to a Nash equilibrium of the stage game or to a similar state under most parameter
combinations. Compared to pay-as-bid pricing, bid prices are closer to marginal costs on average under
uniform pricing while GenCos' total profit is also higher. The random rationing policy of the ISO turns out
to be more successful in achieving lower bid prices and lower GenCo profits. In minimizing GenCos' total
profit, a combination of pay-as-bid pricing rule and random rationing policy is observed to be the most
promising.

1. Introduction

Deregulated electricity markets procure most of the electricity
through several trading floors some of which are designed as auc-
tion-based markets. In most regional/national markets, these trading
floors are controlled and governed by an Independent System Operator
(ISO).

We focus on the day-ahead market in which Power Generation
Companies (GenCos) compete for the next day supply of an inelastic
load demand. In the day-ahead market's auction, for each hour of the
following day, each GenCo bids the minimum acceptable unit price of
electricity for itself. Based on the predetermined market-clearing
mechanism, the ISO determines the market-clearing price and each
GenCo's assigned power. We address two questions regarding the ISO's
market-clearance mechanism that are at the heart of policy discussions
on deregulated electricity markets: Which mechanisms lead to (1) more
competitive price bidding by GenCos, (2) lower GenCo profits, meaning
higher customer benefit.

The market clearing mechanism that we consider includes a pricing
rule and a rationing policy. We compare the two most common pricing
rules in the literature: Uniform and pay-as-bid (or, discriminatory)
pricing (see Cramton, 2004). With uniform pricing, all GenCos with
winning bids are paid the market-clearing price, whereas with pay-as-
bid pricing, each GenCo is paid at its own bid price. In addition to
uniform and pay-as-bid pricing, we also provide results under a DC-
OPF rule under which, each region in the transmission grid may have a
different electricity price due to physical constraints of the transmis-
sion lines.

By “rationing policy”, we refer to the way remaining demand at the
market cleaning price is auctioned when multiple GenCos' bids
coincide at that price. The rationing decision is part of real electricity
market exchange mechanics (See, for example Madlener and
Kaufmann, 2002), however it has not been addressed in electricity
markets literature before.

Learning is an important aspect of electricity markets as GenCos
engage in auctions repeatedly for every hour, and thus obtain experi-
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ence that can change their bidding behavior. To capture this dynamic,
we develop an agent-based simulation model where GenCos can learn
from their own experience based on a variant of the well-known Q-
learning algorithm. Using this model, we simulate the repetitive
auction process under different market clearing mechanisms in a
number of case studies. We compare the results of our simulations
with the Nash equilibrium predictions of static game-theoretic models.

This work contributes to both managerial and academic literature
in a number of ways. Our results can guide ISOs and GenCo managers
regarding the merits of different market clearance mechanisms.
Comparisons between uniform and pay-as-bid pricing is definitely
not new in the literature. However, we extend this comparison with the
rationing policy dimension, and we provide results that incorporate the
interplay between learning, dynamic competition, and ISO's clearance
mechanism. In particular, we show that GenCo learning can take the
market to a different direction than predicted by standard game-
theoretical models. Finally, unlike most papers in literature, we present
results for a wide range of learning model parameters.

The remainder of this article is organized as follows. In Section 2,
we review relevant literature from three different perspectives. In
Section 3, we present the market-clearing mechanism of the electricity
market, explaining the pricing rules and rationing policies. The
learning procedure and the simulation model are discussed in
Section 4. Our game-theoretical understanding of the auction mechan-
ism in electricity markets and the significance of Nash equilibrium are
addressed in Section 5. Section 6 presents the results of simulation
experiments and our findings.

2. Related work

We present the related literature in three parts: learning and game-
theory, applications of agent-based simulation, and analysis of pricing
rules.

2.1. Learning and game-theory

Due to repetitive nature of auctions in the electricity markets,
GenCos are expected to learn by gathering new information in each
repetition of the auction and improve their performance over time. In
this respect, analyzing GenCos' behavior without a learning mechanism
would lead to inaccurate results. Even in the early years of game-
theory, researchers have been interested in learning models. Studying
convergence to Nash equilibrium in the presence of learning has
attracted a lot of attention from game-theory modelers as well as
energy-economics community.

Aumann (1987) claims that Nash equilibrium concept is one of the
most applied concepts in economics; yet, it is not crystal clear under
what condition players might be expected to play a Nash equilibrium.
Mailath (1998) discusses various justifications that have been advanced
for equilibrium analysis and points out learning as the least proble-
matic justification. Also, Mailath (1998) notes that convergence to
Nash equilibria is a necessary condition in the evolutionary dynamics
for any reasonable model of social learning when the number of players
is large enough. Kalai and Lehrer (1993) show that under some
simplifying assumptions, rational learning leads to Nash equilibrium.

Hart and Mas-Colell (2001b) propose “reinforcement” models in
which all players can be led to an equilibrium of the stage game. Their
learning procedure, unlike the “regret-matching” procedure (Hart and
Mas-Colell, 2001a), does not need to observe all past payoffs, and
players do not need to know their own payoff function. Wang and
Sandholm (2002) state that even agents with non-conflicting interests
may not be able to learn an optimal coordination policy in the presence
of multiple Nash equilibria. As a solution, these authors propose a new
learning mechanism based on reinforcement learning that converges to
an optimal Nash equilibrium with probability one in any team Markov
game.

2.2. Agent-based simulation of electricity markets

Although analytical models can be employed to study learning
mechanisms, the expected outcomes of these models are not necessa-
rily observed in practice due to strict simplifying assumptions (David
and Wen, 2000). A widely accepted alternative tool is Agent-based
Modeling and Simulation; it can provide better understanding of real-
life markets especially when analytical models show poor tractability in
investigating complicated problems. Li and Shi (2012) claim that
agent-based modeling and simulation is a viable approach which
provides realistic insights for the complex interactions among various
market players.

Existence of multiple Nash equilibria can disrupt GenCos' learning
process in such a way that the long-run equilibrium is not necessarily
achieved. Krause et al. (2004) study a day-ahead market where GenCos
learn by reinforcement learning (Q-learning). These authors' simula-
tion does not converge in the existence of multiple Nash equilibria. The
GenCos' strategies pendulate between those Nash equilibria. The
oscillation between different Nash equilibria in the reinforcement
learning process can be overcome by making better use of collected
information. To this end, Wang (2009) used the SA-Q-learning
algorithm with Metropolis criterion.

Naghibi-Sistani et al. (2006) apply Q-learning for agents' bidding in
a pool-based power market with uniform pricing. They show that a
participant with reinforcement learning capability could ultimately
learn the optimal policy and could adapt himself to unknown para-
meters in the environment. The authors also find that under reinforce-
ment learning, bids can converge and stay in the Nash equilibrium for a
two-participant case. Nevertheless, these authors have not studied
other pricing rules than uniform pricing and their impact on conver-
gence.

We propose a modified version of the standard Q-learning algo-
rithm. Different from the standard algorithm, ours is a state-indepen-
dent one where Q-values are expressed as functions of actions only
(Similar to Krause et al. (2004) and Krause and Andersson (2006)). In
addition, it is similar to the Simulated Annealing (SA) Q-learning
method (Guo et al., 2004) in that both methods employ a time-
decaying exploration parameter. We use a linear decay, whereas the
SA Q-Learning method uses a geometric function. The time decaying
exploration parameter reflects the increasing experience of agents in
the decision making process, and helps the algorithm achieve conver-
gence. Table 1 presents main features of popular learning algorithms in
order to facilitate a comparison with our method.

2.3. Pricing rules and rationing policy

Selecting a pricing rule is a vital decision for the ISO as it is likely to
affect GenCos' strategic bidding behavior. Researchers have been
investigating the characteristics of pricing rules to improve the
functionality of underlying markets.

Kahn et al. (2001) argue that the proposed shift from uniform to pay-
as-bid pricing in California Power Exchange was a mistake and contrary
to expectations, it will not reduce electricity prices. Under uniform
pricing, GenCos have an incentive to bid their true marginal generation
cost (Oren, 2004) which will contribute to efficiency in power dispatch.
Under pay-as-bid pricing, on the other hand, GenCos will bid at their
expectation of the market clearing price. For that reason, bid prices are
expected to be higher under pay-as-bid. However, this does not
necessarily result in a higher market price for electricity under pay-as-
bid pricing. This is because under uniform pricing, all GenCos are paid at
the market clearing price, whereas under pay-as-bid, they are paid at
their own bids which are generally lower than the market clearing price.
Variation in bid prices and consequently the short-run volatility in
market prices is expected to be lower under pay-as-bid than under
uniform pricing (see, for example, Tierney et al., 2008 and Mount,
2001). That is, pay-as-bid pricing will result in a flatter supply function.
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Power dispatch efficiency may be adversely affected under pay-as-bid
because low-cost GenCos that overestimate the clearing price will not be
dispatched. In addition, GenCos will need to spend resources on
forecasting activities, which would provide larger GenCos with an
advantage over the smaller ones (Wolfram, 1999). Overall, the discus-
sion about the pros and cons of these two pricing policies has not yet
reached a conclusion (Bakirtzis and Tellidou, 2006).

Xiong et al. (2004) compare uniform and pay-as-bid pricing rules
using agent-based simulation and show that pay-as-bid results in lower
market prices and price volatility. They also claim that demand side
response has less effect on market prices with pay-as-bid rule. Bakirtzis
and Tellidou (2006) show that high price levels are due to exercised
market power with both uniform and pay-as-bid policies. Azadeh et al.
(2010) study three different pricing rules (uniform, pay-as-bid, and
Vickrey) by using Principal Component Analysis (PCA). They conclude
pay-as-bid pricing rule with one permissible step to be the best pricing
rule. Sugianto and Liao (2014) use agent-based modeling approach to
investigate the impact of different auction pricing rules on the market
performance. They conclude that the pay-as-bid pricing rule can
complicate the way bidders learn and react to each other's strategy.
Also, their results suggest that Vickrey pricing provides a balance
between managing the total cost and its stability in the presence of
unequal GenCo market shares.

In addition to the pricing rule, we also discuss another aspect of the
market-clearing mechanism, the “rationing policy”. The rationing
policy determines the allocation of the remaining demand at the
market cleaning price when multiple GenCos' (the marginal GenCos)
bids coincide at that price. This possibility arises due to the discrete
nature of bid price and quantity. Rationing rule is especially important
when the bid prices are likely to accumulate at certain values.
Holmberg (2014) and the references therein discuss rationing rules
to break ties between multiple bids at the market clearing price in
general multi-unit auctions. In auctions where all bids are cleared

simultaneously, standard practice is pro-rata rationing where the same
percentage of bid is accepted for each marginal bidder. In continuous
trading, priority can be given to marginal bids that arrive early.
Madlener and Kaufmann (2002) describe the rationing rules employed
in European power exchanges. For instance, in case of a supply surplus
at the market clearing price, APX and OMEL exchanges distribute the
demanded quantity in proportion to the bid quantities. Borzen, EEX
and EXAA exchanges, on the other hand, prioritize according to the
size of bid or time of submission. Different from these, we propose a
rationing policy where the priority ordering of marginal GenCos is
randomly determined (random rationing), and another policy where
the remaining demand is equally distributed to marginal GenCos
(equal rationing). We are not aware of any other work that models
rationing policies in electricity markets.

In order to study the strategic behavior of GenCos under different
market-clearing mechanisms, we employ an agent-based simulation
model in which GenCos learn from their own previous actions by using
a modified version of Q-learning algorithm. We then compare the
results of our simulation with the Nash equilibria of the relevant stage
games under different pricing rules and rationing policies. Finally, we
investigate the effects of the market clearing mechanism on GenCos'
competitive bidding behavior and their profits.

3. Market-clearing mechanism

In the day-ahead market, the ISO clears the bids sequentially for
each hour of the next day through an auction mechanism. For any
hour, each GenCo (GenCo-i) participates in the auction with its
maximum capacity (Pi

max, MW) and submits a bid price from a
discrete set of available prices b B( ∈ )ij i to the ISO. The bid price
alternatives bij ($/MWh) should be above the marginal generation cost
C( )i and below market price cap b( )i

cap which is determined by the ISO
(Borenstein and Bushnell, 2000). Based on the predetermined market
clearing mechanism, the ISO determines the market price λ ($/MWh)
and the power to be dispatched by each GenCo (P P≤i i

max) (MW). We
now discuss different market-clearing mechanisms with respect to
pricing rules and rationing policies.

The combination of price and generation quantity submitted to the
ISO by a GenCo is referred to as the energy block of that GenCo. The
ISO sorts received blocks in an increasing order of their prices

Table 1
Main features of learning algorithms in comparison with our method.

Learning
Algorithm

Exploration
Parameter

Pros Cons

Basic Q-
Learning

Constant • Simple to implement • May not
converge• Shorter CPU time in

each iteration
• Estimates the value
of the new state

SA-Q-
Learning

Changing with
number of times
an action is use

• Better convergence • Parameters
should be
tuned

• Estimates the value of
the new state

• Harder to
implement

Erev and Roth Action selection
probabilities
change based on
fitness value

• Based on psychological
findings about human
learning

• Slow due to
updating Q-
values for each
action at each
iteration.

Our method Changing with
time

• Better convergence • Parameters
should be
tuned

• Simple
implementation
• Considers experience
• Fast due to updating
only the selected action
Q-value.

Fig. 1. Supply curve from GenCos' bids.
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b b( ≤ )i i( ) ( +1) , and accepts generation bid prices starting from the least
expensive block b P( × )max

(1) (1) until demand is completely satisfied (Ott,
2003). This procedure is known as the merit order.

Under uniform pricing, the ISO determines the market clearing
price λ as that of the last accepted energy block. Winning GenCos,
whose bid prices were less than or equal to the market price are paid at
λ. Since they are gaining no less than what they have asked in their
bids, these GenCos accept the market price.

Fig. 1 depicts energy blocks accepted under uniform pricing by the
merit order procedure. The shaded energy blocks are those of the
winning GenCos. The partially shaded block determines the market
price while only part of the capacity of the corresponding GenCo is
accepted by the ISO.

In this example, the market clearing price is determined as b(3)
because D P P≥ +max max

(1) (2) and D P P P≤ + +max max max
(1) (2) (3) . Thus, all win-

ning GenCos are paid λ b= (3). As a result, payoff for GenCo-1 is
r P λ C= ( − )max

1 1 1 , for GenCo-2 r P λ C= ( − )max
2 2 2 , and for GenCo-3

r D P P λ C= ( − − )( − )max max
3 1 2 3 .

Different from uniform pricing, in pay-as-bid pricing rule, each
GenCo is paid exactly at its own bid, but not more. According to the
example in Fig. 1, the GenCo with the least expensive block will receive
a price of b j(1) instead of λ. The next block will receive b j(2) for Pmax

(2) . Note
that the last accepted block will receive λ for the accepted capacity
under both uniform and pay-as-bid pricing rules.

Under both uniform and pay-as-bid pricing, an issue arises when
the market clearing price λ coincides with multiple GenCo's bid prices:
How to allocate the remaining demand? As Fig. 2 illustrates with two
such marginal GenCos (G1 and G2), two “rationing policies” (as we refer
to it) can be used:

1. Random rationing: Marginal GenCos are put into a randomly
determined priority order. If the GenCo with the first priority cannot
satisfy all remaining demand, the unmet demand is passed to the
next marginal GenCo in priority order. This is illustrated in the left
plot of Fig. 2, where GenCo-2 G( )2 was chosen to be the first priority.

2. Equal rationing: Remaining demand is shared equally between the
marginal GenCos. This is illustrated in the right plot of Fig. 2. If a
GenCo does not have sufficient capacity to meet his allocated
demand, the unmet demand is distributed equally to the other
marginal GenCo(s).

In addition to uniform and pay-as-bid pricing, we also study
another pricing mechanism that takes the transmission network
structure into consideration. Even though uniform pricing is the most

common method to set prices in electricity markets, it may lead to
infeasible solutions due to network constraints (Veit et al., 2009).
Therefore in a constrained network, a viable pricing method should
also provide some economic signal to reflect the charge due to the
physical constraints. This is what is done in the “Locational Marginal
Pricing” (LMP) approach. In this approach, the ISO handles physical
constraints by considering congestion cost in calculating price of
electricity at different locations. An LMP at any node corresponds to
the minimum cost of fulfilling the demand for one additional unit
(MW) of power at that particular location. It includes marginal
generation cost, transmission congestion cost, and cost of marginal
losses. Transmission grid congestion is managed by the inclusion of
congestion components in LMPs.

In order to implement locational marginal pricing, an ISO may
employ two methods: AC-OPF and DC-OPF. In practice, AC-OPF
problems are typically approximated by more tractable DC-OPF
problems that focus exclusively on real power constraints in the
linearized form. In this paper, we also use a DC-OPF approach as
one of the market-clearing mechanism alternatives. We choose
DC-OPF over AC-OPF because our long simulation study would simply
be infeasible with the more complicated AC-OPF formulation, and
because DC-OPF is the preferred alternative in the literature.
We assume that the ISO solves a DC-OPF problem to clear the market
for any hour, with the objective of maximizing social welfare (by
minimizing the total cost of demanded electricity). By doing so, the
ISO determines the dispatch P( )i of each GenCo-i and the price of
electricity, LMPi, at each node i. The payoff of GenCo-i is then
calculated as

r P LMP C= ( − ).i i i i (1)

Note that the rationing policy is not relevant under a DC-OPF
mechanism.

4. Simulation process

In our agent-based simulation model, agents represent the GenCos
that are expected to satisfy demand on the transmission grid. GenCos
submit bids sequentially for each hour of the next 24 h to the ISO. The
bidding process is synchronic for all GenCos, and each iteration in the
simulation corresponds to an hour in the day-ahead-market. The
simulation runs for a finite number of iterations (maxt). At the end
of each iteration/bid, each GenCo-i calculates its payoff ri.

Fig. 2. Random rationing (left) versus Equal rationing (right).
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In the simulation model, we assume that

• The demand is inelastic and constant, i.e., it does not change from
one hour to the next.

• GenCos participate only in the day-ahead market (no futures or real-
time markets).

• No line or generation outage is experienced.

• GenCos do not change their technology (no change in Pi
max or Ci).

• Capacity withholding is not allowed. That is, each GenCo bids its
maximum generation capacity.

• GenCos do not share information with each other. They are not
aware of others' generation costs, available bid prices and submitted
bids.

In essence, the bidding process of GenCos is a decision-making
problem with incomplete information as each GenCo is only aware of
its own cost and bids. Each GenCo determines what price to bid
through a Q-learning mechanism (to be explained) based on
historical payoff information from its own bids in previous iterations.
Thus, the profit at an iteration affects the GenCo's subsequent bid
decisions.

We model GenCos' learning mechanism by reinforcement learning.
In particular, we improve the standard Q-learning mechanism by
making the two following parameters time-dependent:

• Recency rate α( ∈ [0, 1])it determines the weight given by GenCo-i to
the most recent observed outcome (profit).

• Exploration parameter (ϵ ∈ [0, 1])it measures the tendency of
GenCo-i at iteration t to explore, i.e., to use a randomly selected
bid rather than using its best identified bid.

Recall that GenCo-i has a set of bid prices b B( ∈ )ij i to choose from.
For each bid price, the Q-value in the learning algorithm denoted by Qij
corresponds to the average realized profit of GenCo-i when bij was used
in the previous iterations. Initially, all Q-values are zero. At the end of
each iteration t, based on the observed payoff ri, the Q-value of the
submitted bid price is updated as follows

Q α Q α r= (1 − ) + ( ).ij it ij it i (2)

A high α value represents a GenCo that is primarily concerned
about the most recent outcomes it experienced, and is less affected by
the distant ones. In our modified Q-learning algorithm, αit starts from
a high value α( )i0 at the beginning and diminishes linearly over
iterations to a lower value of ( )α

10
i0 . To this end, we use a linear

decreasing function of time for αit as

α t α t α= 1 −
max

( ) +
max 10

.it
t

i
t

i
0

0⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (3)

We use a descending recency rate because the GenCo is assumed to
become less sensitive to individual recent observations over time due to
gained experience.

We refer to the bid price b*i that maximizes the Qij value as GenCo-
i's “best identified bid price”. In the proposed Q-learning algorithm,
at iteration t, GenCo-i either selects its best identified bid price (with
prob 1 − ϵ )it , or it explores by choosing a random bid price from Bi
(with probability ϵit). Therefore, with lower ϵ, the GenCo explores
less and sticks to its best identified bid price more often. At the
beginning of the simulation, b*i is determined randomly from Bi since
Q-values of all bid prices are zero. We assume that GenCos explore
more in initial iterations using random bids, but they are more likely to
use their best identified bid price in latter iterations. To represent such
behavior, the exploration parameter (ϵ )it decreases linearly from the
base value of ϵi0 (when t=0) to almost zero at iteration number
⌈ ⌉max ϵ

8(1 − ϵ )
t i

i
0
0

. Exploration is minimum and exploitation is maximum after-

wards.

Our Q-learning algorithm is presented in Algorithm 1. In line 2, Q-
values are set to zero for initialization. In lines (7−11), the GenCo
determines its bid price to the ISO. This decision is governed by the
Q-learning parameters. Following the market clearance by the ISO in
line 12, GenCo-i will update the Q-value of the selected bid price in
line 13.

Algorithm 1. The simulation model with the proposed Q-learning
algorithm for each GenCo-i.

1: t ← 1
2: Q j← 0 ∀ij

3: repeat
4: R ← Random Number ∈ [0, 1]
5: maxϵ ← {0.001, 1 − (1 − ϵ )(1 + )}it i

t
max0

8
t

6: α α α= (1 − )( ) + ( /10)( )it
t

max i i
t

max0 0
t t

7: if R then> ϵit

8: b ← Selectij Best bid price b( *)i

9: else
10: b ← Selectij a bid price randomly b B( ∈ )ij i

11: end if
12: ri←CLEARMARKET({bij: i∀ })
13: Q α Q α r← (1 − ) + ( )ij it ij it i

14: t t← + 1
15: until t max( < )t

The increasing exploitation of the best identified bid price cancels
out the effect of GenCos' random choices at early iterations. Therefore,
the Q-value of the best identified bid price b*i for each GenCo-i
converges to the profit r( )i of GenCo-i in the equilibrium state in the
long-run.

5. Nash equilibrium

We assume that GenCos start bidding with no information
about the potential profit of each bid price in their set of bid prices,
and the possible bid prices of other GenCos. Throughout the
iterations, each GenCo experiences the outcome of its own bids,
but not those of competitors. In our simulation analysis, we would
like to understand if the market reaches a Nash equilibrium of the
stage game. In this respect, each iteration of the simulation corre-
sponds to a stage of the multi-stage interaction between the competing
GenCos.

The market clearance process for an hour in the day-ahead market
can be modeled as a non-cooperative single-stage game G with finite
number of players, n= {GenCo − 1,…,GenCo − }, an action space of

B B= ( ×…× )n1B and a vector of payoffs r r r= ( ,…, )n1 . Thus, the normal-
form representation of G is denoted by the triplet r( , , )B . In each
iteration, collection of submitted bids b B b B( ∈ ,…, ∈ )n n1 1 defines the
“state” of the game.

When the random rationing policy is used (under both uniform and
pay-as-bid pricing rules), the same set of bid prices from GenCos can
lead to different power dispatches, resulting in different profit vectors.
This is because of the ISO's random prioritization among the GenCos
that submit the same bid at the market-clearing price. Therefore,
in the random rationing policy, we calculate the average payoff of each
GenCo with respect to the probability of each realized profit for a given
state. The vector of average payoffs will be used to identify Nash
equilibria.

In our context, a bidding strategy N b b= ( ,…, )N
n
N

1 is called a Nash
equilibrium if any GenCo-i cannot make a better payoff than the payoff
of the Nash equilibrium r( )i

N by choosing another bid price b B( ∈ )ij i as
long as the other GenCos are not changing their bid prices, i.e.
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r r r r r r i n( ,…, ,…, ) ≥ ( ,…, ,…, ), ∈ {1,…, }.N
i
N

n
N N

i n
N

1 1 (4)

We also make the following new definition: A state S b b= ( ,…, )S
n
S

1 is
a semi-Nash state if

r r r r j b b( ,…, ) = ( ,…, ) ∃ such that ≠ .S
n
S N

n
N

j
S

j
N

1 1

A semi-Nash state is defined with respect to a particular Nash
equilibrium. If one of the GenCos (say, GenCo-i) in a Nash equilibrium
can change its bid price without affecting the payoff of any GenCo
including itself, we refer to the resulting state as a semi-Nash (as long
as the resulting state is not a Nash equilibrium itself). Because a
semi-Nash state is not a Nash equilibrium, at least one of the GenCos
(other than GenCo-i) can increase its payoff by deviating from this
state. During our experimental simulations, however, such a GenCo
may or may not realize this profitable deviation opportunity.
Hence, the simulation may end up converging to a semi-Nash state
just like it may converge into a Nash equilibrium. Indeed, this is what
we observed in our experiments as we will present in the following
section.

6. Computational experiments

We conduct simulation experiments on four case studies. In each
case study, GenCos are subject to challenges due to a variety of
environmental settings. The underlying characteristics of the case
studies can be summarized as follows:

• Case 1: A public GenCo and a private GenCo compete in a limited
competition market where the public GenCo always bids its genera-
tion cost.

• Case 2: Two private GenCos and a public GenCo participate in a
competitive market where only the private GenCos are learning
agents.

• Case 3: The public GenCo in Case 2 is replaced with a learning
GenCo.

• Case 4: Three learning GenCos compete to satisfy demand of a single
node. As the demand can be satisfied to a great extent by any one of
three GenCos, competition between GenCos is tight.

The details of the case studies are presented in Appendix A. Case 2 and
Case 3 are adopted from Krause et al. (2004) and Krause and
Andersson (2006) with slight modifications. The network structure of
these cases are simplified versions of the real Pennsylvania-New-
Jersey-Maryland (PJM) five node power system. Table 2 reports the
number of Nash equilibria and semi-Nash states under each pricing
rule.

In what follows, we first use Case 1 to illustrate how our Q-learning
algorithm operates. Then, with other cases, we study whether our
simulations converge to theoretical Nash equilibria and/or semi-Nash
states. Then, we study the competitive bidding behavior and realized
profits of GenCos under different pricing rule and rationing policy
combinations.

6.1. Illustration of the learning algorithm

To describe the behavior of the only learning agent (the private
GenCo) in Case 1, we limit the public GenCo to bid one price;
therefore, the described Q-learning algorithm does not apply to this
GenCo.

Fig. 3 shows the evolution of expected profits (Q-values) for the
private GenCo for each bid price option throughout 300 iterations. The
results clearly indicate one outcome: The private GenCo gradually
learns to bid higher prices to the ISO as it discovers along iterations
that the public company cannot fulfill the demand. Eventually, the
private GenCo reaches the maximum Q-value of 2700 by bidding 40.
In fact, this bid, along with the fixed bid of the public GenCo
correspond to the unique Nash equilibrium of the stage game. The
bid also happens to be the optimal one for the private GenCo. We
observed this result to hold true in Case 1 independent of the pricing
rule and rationing policy.

We examine the results with respect to three aspects: convergence
to Nash equilibria, GenCos' competitive bidding behavior and GenCos'
profits. All results are based on the data of the simulation study. For
each case study, we run simulations for 51 × 51 = 2601 different
combinations of the initial values of the two learning model parameters
(αi0 and ϵi0). For each parameter, we use all values between 0 and
1.00 with an increment of 0.02. All learning GenCos are subject to the
same learning algorithm and assumed to possess the same learning
parameters. To minimize the effects of random factors, we conduct
30 simulation replications for each parameter setting and report the
average over these 30 replications. Each simulation replication consists
of (maxt=2000) iterations. That corresponds to solving the ISO's

Table 2
Number of Nash equilibria and semi-Nash states in case studies.

Case
study

Learning
GenCos

Uniform pricing Pay-as-bid pricing DC-OPF pricing

Nash semi-
Nash

Nash semi-
Nash

Nash semi-
Nash

Case 1 1 1 0 1 0 1 0
Case 2 2 3 1 3 1 1 0
Case 3 3 6 4 3 2 2 3
Case 4 3 3 10 3 7 3 15

Fig. 3. Evolution of Q-values of the private GenCo over iterations.
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market clearing optimization problem and running the Q-learning
algorithm 2601 × 30 × 2000 = 156, 060, 000 times for each case study
under each market-clearing mechanism. Due to such detailed analysis,
the reported simulation study took longer than 700 h on a powerful
computer (Intel Core i7@3.2 GHz with 24 GB RAM).

6.2. Convergence to nash equilibria and semi-nash states

We investigate whether the simulation converges to a Nash
equilibrium, a semi-Nash state or neither at its termination. For a
particular parameter setting (αi0 and ϵi0), we define “convergence
frequency to Nash equilibrium” as the proportion of replications (over
30 total replications) in which the simulation converged to a Nash
equilibrium. That is, if the simulation converged to a Nash equilibrium
in 18 out of 30 replications, this frequency becomes 18/30 = 0.6.
Table 3 displays convergence frequency to Nash equilibria under
different pricing rules and rationing policies for each case. The lighter
a point on charts, the higher the convergence frequency of the
simulation under the corresponding parameter setting to Nash equili-
bria.

We observe that the convergence frequency to Nash equilibria
decreases as the complexity of the case increases (from Case 2 to Case
4) because the number of states is substantially higher in the more
complex cases. In all case studies, GenCos bids converge to Nash
equilibria more frequently when ϵ ∈ [0.7, 0.9]i0 , and they fail to
converge when ϵ < 0.1i0 . That is, convergence frequencies tend to
decline as one moves left in any figure. In fact, in Appendix B, we show
very low exploration to disrupt learning. Furthermore, we observe a
high-convergence zone around ϵ ≈ 0.9i0 for any αi0; this is due to the
shape of the linear decay function of ϵit.

An important difference between the equal and random rationing
policies is seen in the figures: Under equal rationing, the regions of
high and low convergence are clearly separated from each other,
whereas under random rationing, we do not observe such separation.
Recall that the random rationing policy of the ISO introduces
another uncertain event to the decision-making process of GenCos
when the ISO prioritizes among marginal GenCos with the same bid
price. Imposing more randomness to the system disrupts the
learning process of GenCos by blurring the link between successful
bids and high profits. Thus, the ISO can use a random rationing policy
in cases where it needs to interfere with GenCos' learning. This can be
the case, for instance, when collusion opportunities are present for
GenCos.

The figures also allow comparing the effectiveness of changing the
pricing rule and changing the rationing policy in convergence to Nash
equilibria. We observe the result of the comparison to be case-
dependent: While the rationing policy change is more influential in
Case 2, pricing rule is more important in Case 4. In Case 3, on the other
hand, both factors seem to be influential.

Under DC-OPF pricing, settings with a high convergence frequency
create a distinctive wedge shape extending from α ≈ 0.04i0 and ϵ ≈ 0.9i0
to α ≈ 1i0 and ϵ ≈ 0.9i0 while it is curved around α ≈ 0.1i0 and ϵ ≈ 0.4i0 .
This observation suggests that GenCos with low tendency to explore
while giving sufficient importance to the last observed outcome are
more likely to converge to Nash equilibria especially in Case 2 and
Case 3.

Table 4 summarizes the observations we make from Table 3 by
presenting the average (over different parameter settings) observed
convergence frequencies to Nash equilibrium under different pricing
rules and rationing policies. As stated before, convergence frequency is
high for the simple case (Case 1) and relatively low for the more
complex ones (say, Case 4). Uniform pricing causes higher convergence
frequency to Nash equilibrium than pay-as-bid for most cases (except
Case 3, under equal rationing). For Case 1, we observe no impact of
either the pricing rule or the rationing policy on the behavior of the
private GenCo.

Comparisons become clearer when one also includes convergence
to semi-Nash states. Table 5 presents the convergence frequency to
semi-Nash states and to either Nash or semi-Nash states (in parenth-
eses). That latter frequency is observed to be higher under uniform
than under pay-as-bid pricing rule; and higher under random than
under equal rationing policy. Overall, we can claim that our simulations
with learning agents do converge to Nash equilibria, or a state that has
identical payoffs with a particular Nash equilibrium (a semi-Nash state)
for the majority of parameter settings.

6.3. Competitive bidding analysis

In Section 6.2, we studied the convergence of GenCos' bid prices to
Nash equilibria or semi-Nash states. In this section, we are interested
in the competitive bidding behavior of the GenCos. To this end, we
analyze the difference between the bid prices and the marginal cost of
GenCos. In a highly competitive market, GenCos are likely to reduce
their bid prices, leading to a smaller difference between the bid price
and the generation cost. In general, uniform pricing provides more
incentives for bidding a closer price to marginal cost than pay-as-bid
pricing does.

To investigate whether this expectation holds in our simulation
results, we define Δ b C= * −i

k
i

k
i

( ) for GenCo-i in replication k. Here,
b *i

k( ) denotes the best identified bid price at the end of replication k. For
a given parameter setting (ϵi0 and αi0), we calculate the average Δi

k

over all N GenCos and 30 replications as Δ =
N

∑ ∑ Δ
30 ×
k i i

k
.

Fig. 4 presents the differences in Δ between the two pricing rules
and the two rationing policies for Case 3 (as an example). For instance,
Fig. 4(A) shows the difference in Δ between equal and random
rationing, under uniform pricing. All indicated difference values are
found to be positive with the only exceptions marked with dark
coloring. These exceptions, where the Δ difference is negative, are
found in the rightmost side of Fig. 4(A), and in a few islands in the
middle of Fig. 4(C). Thus, uniform pricing is found to be more
successful in making GenCos submit closer bid prices to their marginal
costs for almost all parameter settings. Likewise, equal rationing is
observed to be more successful than random rationing. These observa-
tions are summarized in Table 6 which provides the average Δ values
Δ( ) over all parameter settings. A combination of uniform pricing and
random rationing lead to the lowest Δ values. Hence an ISO can use
this combination to stimulate GenCos to submit lower bid prices in the
market. DC-OPF rule, on the other hand, is again not observed to
perform better than the other mechanisms.

6.4. GenCo profit analysis

In the previous section, we observed uniform pricing to achieve
lower bid prices than pay-as-bid. However, this difference does
not necessarily lead to lower GenCo profits under uniform pricing
because of the difference in payment mechanisms. In this section, we
compare GenCos' total profits under different market clearing mechan-
isms. This analysis is important because higher GenCos profits
indicates that the market fails to provide affordable electricity for
consumers.

For a given parameter setting α( , ϵ )i i0 0 , we first calculate the average
profit of each GenCo-i over 2000 iterations and 30 replications as

r =i
r∑ ∑

30 × max
k t

maxt
it
k

t
=1

30
=1 . Next, we calculate GenCo-i's average profit over all

parameter settings. These are reported for all GenCos over Case 2, Case
3, and Case 4 in Tables 7, 8 and 9, respectively.

We observe clearly that switching from uniform to pay-as-bid
pricing rule decreases GenCos' total profits, regardless of the rationing
policy. For Case 2, the effect is more tangible because GenCo-2 has only
one bid price which is equal to its generation cost.

We shall also investigate the profit difference between the market-
clearance mechanisms statistically using 2601 parameter settings

D.E. Aliabadi et al. Energy Policy 100 (2017) 191–205

197



Table 3
Convergence frequency to Nash equilibria.
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Table 4
Convergence frequency to Nash equilibria.

Case
study

Uniform
equal rat.

Uniform
random rat.

Pay-as-bid
equal rat.

Pay-as-bid
random rat.

DC-OPF

Case 1 0.8242 0.8242 0.8242 0.8242 0.8242
Case 2 0.8396 0.7096 0.8396 0.7049 0.7865
Case 3 0.5776 0.6230 0.6673 0.6133 0.4443
Case 4 0.4848 0.4891 0.2906 0.3269 0.5246

Table 5
Convergence frequency to semi-Nasha states.

Case
study

Uniform
equal rat.

Uniform
random rat.

Pay-as-bid
equal rat.

Pay-as-bid
random rat.

DC-OPF

Case 2 0.1081
(0.9477)

0.2683
(0.9779)

0.1081
(0.9477)

0.2722
(0.9771)

N/A
(0.7865)

Case 3 0.1864
(0.7640)

0.2748
(0.8978)

0.0845
(0.7518)

0.2517
(0.8650)

0.2253
(0.6696)

Case 4 0.4369
(0.9217)

0.4367
(0.9258)

0.3314
(0.6220)

0.3430
(0.6699)

0.4418
(0.9664)

a Values inside parentheses indicate the summation of convergence frequencies to Nash equilibria and semi-Nash states.

Fig. 4. Difference in Δ between the two pricing rules and the two rationing policies for Case 3.
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Table 6
Δ comparison.

Case
Study

Uniform
equal rat.

Pay-as-bid
equal rat.

Uniform
random rat.

Pay-as-bid
random rat.

DC-OPF

Case 1 27.510 27.510 27.510 27.510 27.510
Case 2 21.244 21.244 10.896 10.915 20.592
Case 3 26.247 37.176 12.781 22.107 40.680
Case 4 19.209 27.696 19.110 26.969 19.753

Table 7
GenCos' profits under different market-clearing mechanisms in Case 2.

Uniform Uniform Pay-as-bid Pay-as-bid DC-OPF
equal rat. random rat. equal rat. random rat.

GenCo-1 1944.07 1966.18 1944.07 1965.28 1007.61
GenCo-2 4647.61 3542.70 0.00 0.00 1060.85
GenCo-5 571.73 172.90 571.73 172.04 2264.00
Total 7163.40 5681.78 2515.79 2137.32 4332.47

Table 8
GenCos' profits under different market-clearing mechanisms in Case 3.

Uniform Uniform Pay-as-bid Pay-as-bid DC-OPF
equal rat. random rat. equal rat. random rat.

GenCo-1 3393.48 2822.74 2709.80 2504.06 5085.20
GenCo-2 3434.35 2829.77 2756.82 2517.76 1844.68
GenCo-5 755.65 275.91 893.53 332.77 2233.11
Total 7583.48 5928.43 6360.15 5354.60 9162.99

Table 9
GenCos' profits under different market-clearing mechanisms in Case 4.

Uniform Uniform Pay-as-bid Pay-as-bid DC-OPF
equal rat. random rat. equal rat. random rat.

GenCo-2 5273.27 5318.39 5505.16 5422.45 4962.80
GenCo-3 14,783.93 14,796.97 12,757.13 12,454.59 15,900.05
GenCo-4 439.73 421.12 336.70 335.89 375.96
Total 20,496.93 20,536.48 18,598.98 18,212.93 21,238.81

Fig. 5. Histogram plot of profit differences between uniform and pay-as-bid pricing where TXY denotes the difference vector under rationing policy X (E represents Equal and R
represents Random) in Case Y.
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α( , ϵ )i i0 0 as the samples. For each case study and each rationing policy,
we test whether the difference of the median profits between uniform
pricing and pay-as-bid pricing is zero or positive while the difference is
calculated by subtracting the profit under pay-as-bid pricing from that
under uniform pricing. Fig. 5 shows the histograms for the three case
studies. We observe almost all differences to be positive, indicating
higher GenCo profits under uniform pricing for almost all parameter
settings. In fact, the median profit difference is found to be statistically
higher than zero (Nonparametric Sign Test with p-values around
0.0000). In addition, in Case 2 and Case 3, the profit difference between
the pricing rules under equal rationing is observed to be more
pronounced from the one under random rationing. Finally we observe
the profit distribution among GenCos to be quite different under the
DC-OPF rule compared to those under the other clearance mechan-
isms. This result highlights the role of locational marginal pricing in
DC-OPF, which takes the transmission grid structure and constraints
into accounts in determining local electricity prices.

7. Conclusion

We study the effect of the ISO's market-clearing mechanism on the
bidding behavior of GenCos in an electricity market in the presence of
GenCo learning. We compare the results under two well-known pricing
rules along with two different rationing policies. We also consider the
DC-OPF formulation as an alternative mechanism that takes transmis-
sion line constraints into account.

We develop an agent-based simulation model that captures the
learning dynamics of competing GenCos in the repetitive market. Our
learning algorithm is an extension of the standard Q-learning algo-
rithm with time-decaying parameters. The simulation model is im-
plemented on four case studies representing different levels of market
complexity. Results are reported under all possible combinations of the
two key learning-model parameters.

Simulation results indicate that under most parameter settings, the
market does converge to either a Nash equilibrium or a state that has
identical payoffs with a particular Nash Equilibrium (a semi-Nash
state, as we define it). Thus, GenCos individual learning moves the
market towards the game-theoretical prediction in a good number of, if
not in all cases. This is an interesting result as individual GenCos are
not aware of the parameters of other GenCos. The convergence
frequency to Nash Equilibria is found to be lower for more complex
cases. Hence, learning GenCos are not likely to behave as predicted by
game theory in more sophisticated settings.

We use the simulation study to investigate two aspects of different
market clearing mechanisms: Competitiveness of GenCo bid prices and
GenCos' total profits. Uniform pricing is found to be more successful
than pay-as-bid pricing in making GenCos submit closer bids to their
marginal costs. At the same time, however, GenCos' total profit is also
higher under uniform pricing, indicating lower consumer benefit.
Because all GenCos are paid at the highest accepted bid price, uniform
pricing can lead to higher total profits than pay-as-bid although the
submitted bid prices are lower. This result approximately holds true at
GenCo level (except GenCo-5 of Case 3 and GenCo-2 of Case 4).
Therefore, in accordance with Azadeh et al. (2010), our results suggest
pay-as-bid as the better pricing rule for the ISO.

In addition to the pricing rule, we find the rationing policy to have
significant effects on GenCos' bids and their profits. Compared with
equal rationing, random rationing policy is seen to be more effective in
reducing total profits. This can partly be explained by the disruption in
GenCos' learning process due to random rationing. This finding can be
instrumental if the ISO needs to prevent GenCos' learning towards, for
instance, a collusive equilibrium. Overall, a combination of pay-as-bid
pricing and random rationing turns out to be the best combination to
limit GenCos' total profits.

The agent-based simulation model in this study is a detailed and
versatile one. We plan to extend this model to address further

Fig. A.6. The transmission grid for Case 1.

Table A.10
Transmission line properties.

Src (k)/Dst (l) ykl Fkl
max (MW)

1/2 4 20
2/3 4 No limit

Table A.11
Parameters of the GenCos.

ID Pi
max (MW) Ci ($/MW h) Bi ($/MW h)

1 110 10 {10}
3 100 10 {10, 20, 30, 40}

Table A.12
Transmission line properties in Case 2.

Src (k)/Dst (l) ykl Fkl
max (MW)

1/2, 1/3, 2/4, 3/4, 4/5 4 No limit
2/5 4 100

Fig. A.7. The network for Case 2 and Case 3.

Table A.13
Parameters of GenCos in Case 2.

ID Pi
max (MW) Ci ($/MWh) Bi ($/MW h)

1 300 20 {20,30,40,50}
2 300 20 {20}
5 250 30 {30,40,50}
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questions on strategic interactions in electricity markets. One future
research direction is the study of GenCos' collusive behavior (Aliabadi
et al., 2016). Considering capacity withholding would allow GenCos bid
pairs of price and quantity, and it may facilitate to a more realistic
model. Assuming that the GenCo submits its whole capacity, we chose
to ignore the quantity choice. It helps to focus on our research
questions and avoid additional computational burden due to curse of
dimensionality. Thus, capacity withholding can also be investigated by
making quantity a second dimension of the GenCos' bid. Yet another
subject of study might be the effects of a second market.

Appendix A. Details of case studies

A.1. Case 1: Public GenCo versus Private GenCo

The simplified transmission grid is illustrated in Fig. A.6. Node 1
represents the public GenCo company and Node 3 represents the
private one while Node 2 represents a load/demand center. The
properties of transmission lines are shown in Table A.10; the first
column Src k Dst l( )/ ( ) shows the source and the destination nodes of
transmission line; the second column depicts the value of the admit-
tance parameter of the line and the last column shows the maximum
flow on the line. The public GenCo benefits from subsidies to keep the
price of energy as low as possible. As a result, it offers a bid price which
is equal to its marginal cost C( )1 . The list of possible bid prices
($/MWh) for both companies are given in Table A.11 along with their
generation capacities and marginal generation costs.

A.2. Case 2: Two GenCos as learning agents

In the second case study, we have a five-node transmission grid
governing the power market. The properties of transmission lines are
given in Table A.12. The network structure along with generation
capacities and demand load data are given in Fig. A.7 and Table A.13,
respectively. Node 3 is the reference bus in this system (i.e. the voltage
angle of reference bus is zero in DC-OPF). Node 1 and Node 5 are the
GenCos that benefit from learning.

Table A.14
Profit of each policy r r r{ , , }1 2 5 – Rows show the values for B1, columns show the values for B2 and the values for in separated parts B5.

Fig. A.8. Structure of market.

Table A.15
GenCos bidding sets and costs.

ID Pi
max (MW) Ci ($/MW h) Bi ($/MW h)

2 1200 10 {10, 20, 30, 40}
3 800 0 {9, 18, 20}
4 1000 15 {15, 25, 35, 45}
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A.3. Case 3: three GenCos behaving as learning agents

If we change the second case study's bid alternatives for b2 from
{20} to {20, 30, 40, 50} the system would have multiple Nash equilibria.
Table A.14 shows all possible outcomes under DC-OPF pricing: The
intersection of all best responses are highlighted in dark-gray; they
represent the Nash equilibria.

A.4. Case 4: three learning GenCos with a centralized demand
node

In this case, we have created a small market with three GenCos;
Fig. A.8 shows structure of undertaken market. The second GenCo
benefits from wind power technology; this is why, generation cost is
negligible in Table A.15. Thus, GenCo-2 can bid a lower price to the
ISO (cost of not fulfilling promised demand is considered in the price of
electricity).

Appendix B. Boundary analysis of the proposed learning
algorithm

To keep tracking the evolution of Q-values over iterations, we
modify the Q-value and payoff notations. Qij

t( ) stands for the Q-value of

bij at iteration t . Also, the received payoff of GenCo-i at iteration t is ri
t( ).

B.1. Conventional Q-learning

Using mathematical induction we know that

Q α Q α r Q

t Q α Q α r

t Q α Q α r

α r α α r

= (1− ) + ; = 0
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while the closed form can be written as

∑Q α r α= ( ) (1 − )ij
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(B. 2)

Boundary condition 1
When α Q r= 1 ⇒ =i ij

n
i

n( ) ( ) from Eq. (B. 2) by setting α = 1i just for
t n= , we get α(1 − ) = 0 = 1i

n t− 0 .

Boundary condition 2
When ϵ = 0. ϵi parameter determines how much exploration

should be done. Therefore, if ϵ = 0i then the GenCo only selects bij

corresponds to Qij
(1) (by assuming positive ri

(1)), because all other
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and, if we assume that one may conduct experiments with max = ∞t ,

Fig. B.9. Effect of f n( ) for different αi0 over different n.

Fig. B.10. Linear decaying function with different ϵi0 over time.
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then Q rlim =
n

ij
n

i
→∞

( ) (1) . Therefore, GenCos cannot make more profit per

iteration by increasing the number of iterations.

Boundary condition 3
Finally, if α = 0i then Q = 0ij

n( ) from Eq. (B. 2).

B.2. Q-learning with variable learning rate

The closed form of Q-values in presence of variable learning rate is
as follows.

∑Q α r Π α= (1 − )ij
n

t

n

it i
t

t t
n

it
( )

=0

( )
^= +1

^
(B. 4)

Also, we have α α α α= − ( − ) = −it i
t
n i

α
i

tα
n0 0 10 0

9
10

i i0 0 . Because in each

iteration, Qij
n( ) is a convex combination of non-negative r s Q,i ij

n( ) is
non-negative.

Boundary condition 4
If ϵ = 0 , from Eq. (B. 4), we get

∑Q r α Π α= (1 − )ij
n

i
t

n

it t t
n

it
( ) (1)

=0
^= +1

^
(B. 5)

as r r=i
n

i
( ) (1). In this situation Qij

n( ) is not only affected by ri
(1) but is also a

function of maximum number of iterations and the initial learning rate.
We refer to f n α Π α( ) = ∑ (1 − )t

n
it t t

n
it=0 ^= +1
^ as learning function when

α α= −it i
tα

n0
9
10

i0 . Fig. B.9 depicts the evolution of f n( ) over different n,
considering different αi0.

Proposition 1. (Bounded Learning Function) f n( ) is an increasing
bounded function that converges to a number between [0, 1].

Proof. Given that f n α T Π α T( ) = ∑ (1 − )t
n

i t t t
n i t=0 0 ^= +1 0 ^ when

T = 1 − , ∈[1, 0.1]t
t
n

9
10 is a scale parameter and decreasing. Therefore,

f n( ) ≥ 0 and f n( ) = 0 when α = 0i0 which means no learning
employed. However, we also need to find an upper bound for f n( ).
The most dramatic increase in f n( ) happens when α = 1i0 . Hence,
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Thus, f n( ) is a bounded function f n| ( ) | ≤ 1. Also, from definition of
f n( ) we know, f n f n α f n( + 1) − ( ) = (1 − ( ))in+1 and when f n( ) ≤ 1
therefore, f n f n( + 1) ≥ ( ) hence f n( ) is an increasing sequence. By
using the Bolzano–Weistrass theorem, f n( ) converges to some point
such as f ′ ∈ [0, 1].□

By using Proposition. 1, Q r≤ij
n

i
n( ) ( ). Also, Q r=ij

n
i

( ) (1) when α = 1i0 for

every n > 0 and Q = 0ij
n( ) when α = 0i0 .

Proposition 2. (Continuity of Q – value function) for every ε > 0
there exists δ > 0α such that α δ| − 1| <i α0 then Q r ε− <ij

n
i

( ) (1) .

Proof. By assuming n as real number, f n( ) is a continuous function,
Q r f n= ( )ij

n
i

( ) (1) is also continuous and by definition of continuous
function, we can find such an interval. Therefore, by increasing n( ) a
GenCo cannot make better profit than ri

(1).
Thus, by checking our algorithm, one can comprehend by choosing

ϵ <i0
8
9 there exists t ∈ [1, max ]t such that ϵ = 0it̂ when t t^ ≥ . Thus,

conducting simulation for more iterations than t won't help GenCo-i

to gain more profit per iteration than the best bid at time t (see Fig.
B.10).

Boundary condition 5
Contrary to Boundary Condition 1, Q r≠ij

n
i

n( ) ( ) when α = 1i0

because α-value changes during iterations. Hence, the historical payoff
information from GenCo-i 's bids in previous iterations are considered
when αit is a monotone decreasing sequence α α t t( > for < ^)it it̂ .
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