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� Propose optimal scheduling scheme for smart residential community.
� Classify smart residential loads into different categories according to different demand response capabilities.
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� Provide support for the decision of electricity pricing strategy under electric power market development.
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a b s t r a c t

With the reformation of electric power market and the development of smart grid technology, smart res-
idential community, a new residential demand side entity, tends to play an important role in demand
response program. This paper presents a demand response scheduling model for the novel residential
community incorporating the current circumstances and the future trends of demand response programs.
In this paper, smart residential loads are firstly classified into different categories according to various
demand response programs. Secondly, a complete scheduling scheme is modeled based on the dispatch
of residential loads and distributed generation. The presented model reduces the cost of user’s electricity
consumption and decreases the peak load and peak-valley difference of residential load profile without
bringing discomfort to the users, through which residential community can participate in demand
response efficiently. Besides, this model can also provide support for the decision of electricity pricing
strategies under power market development.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Demand response (DR), the main method of interaction
between the power grid and customers under power market devel-
opment, has been widely applied in recent years. In perspective of
the grid utility, DR can improve load profile by reducing peak load
and peak-valley difference, thus decreasing the operation cost of
the system, and alleviating the pressure of the grid investment
on load increase. On the other hand, for the electricity consumers,
DR reduces cost of customers’ electricity consumption without
affecting their satisfaction. Among loads that can participate in
DR, residential load has great potentiality, and can effectively ame-
liorate the demand-side load curve [1,2].

With the development of smart grid technology, controllable
loads and distributed generation (DG) have been gradually inte-
grated into residential side. Smart meters, in addition, have been
gradually applied to residential buildings. Therefore, a new DR par-
ticipant with considerable load flexibility arises from residential
side, which is smart residential community. Fig. 1 shows the com-
ponents of the load and DG in smart residential community that
include interruptible load, controllable load, roof-top solar panel,
and storage battery. In comparison to conventional residential
loads, smart residential community has greater DR potentiality
leading to that it can smooth the load curve more dramatically
owing to its load flexibility. In addition, DR of smart residential
community is also crucial for ancillary service entities to get
involved in power market. Since smart residential community
arises freshly, few studies have been done upon DR of this specific
entity. Thus, it is meaningful and necessary to study the DR strat-
egy of smart residential community.

China has initiated numerous demonstration projects of smart
residential community during the past several years aiming to
reduce the peak load, load peak-valley difference and energy
/dx.doi.
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Nomenclature

Indices
l superscript for interruptible load
a superscript for adjustable load
b superscript for shiftable load
i index for power generation unit
j, k index for load unit
t index for time

Parameters
Pl;max
j maximum curtailable power of interruptible load j at

each hour (kW)
Xl;max
j maximum daily curtailable hours of load j (h)

PL
j;t original load power of load j at hour t (kW)

Pa;base
j;t original power of illumination load j at hour t (kW)
qa;min
j price threshold of illumination load j (¥/kW h)

Pa;min
j;t adjusted power of illumination load j at hour t (kW)
qt power price of grid at hour t (¥/kW h)
e small positive constant (which equals to 0.001 in this

paper)
Tak;t ambient temperature of air conditioner k at hour t (�C)
ak system inertia of air conditioner k
Dt control interval (1 h)
Ck thermal capacitance of air conditioner k (kW h/�C)
Rk thermal resistance of air conditioner k (�C/kW)
gk working efficiency factor of air conditioner k
Pmin
k , Pmax

k minimum and maximum power of air conditioner k
at each hour (kW)

Ts;base
k;t original temperature set point of air conditioner k at

hour t (�C)
Ts;max
k;t adjusted temperature set point of air conditioner k at

hour t in cooling mode (�C)
qa;min
k price threshold of air conditioner k (¥/kW h)

Pb;average
j average power of shiftable load j (kW)

Xb;on
j;t total operated hours of shiftable load j at hour t (h)

Ub
j cycle duration of shiftable load j (h)

s start hour of time window set by user (h)
T end hour of time window set by user (h)
Pb;min
k , Pb;max

k minimum and maximum charge power of EV k at
each hour (kW)

Ta users EV home arrival time (i.e. EV plug-in time) (h)
Tb end of users EV charge time (h)
Emax
k battery capacity of EV k (kW h)

D maximum mileage of EV
ql
j interruptible load curtailment tariff (¥/kW h)

Pg;min, Pg;max minimum/maximum purchased power from grid at
each hour (kW)

Pmin
c;i , Pmax

c;i minimum/maximum charge power of battery i at
each hour (kW)

Pmin
d;i , Pmax

d;i minimum/maximum discharge power of battery i at
each hour (kW)

gS
i discharge/charge inverter efficiency

Emin
i , Emax

i minimum/maximum stored energy of battery i
(kW h)

NT total schedule hours (24 h in this paper)

Variables
Pl
j;t curtailed power of user j at hour t (kW)

Ilj;t binary status indices of interruptible load j at hour t (if
load is curtailed, Ilj;t ¼ 1)

Pa
j;t power of illumination load j at hour t (kW)

Iaj;t binary status indices of adjustment of illumination load
j at hour t (when hourly price is higher than qa;min

j;t ,
Iaj;t ¼ 1)

Tk;t air conditioner temperature of air conditioner k at hour
t (�C)

T g
k;t temperature adjustment of air conditioner k at hour t

(�C) when it is turned on
Pa
k;t load power of air conditioner k at hour t (kW)

Ts
k;t temperature set point of air conditioner k at hour t (�C)

Iak;t binary status indices of adjustment of air conditioner k
at hour t (when hourly price is higher than qa;min

k;t ,
Iak;t ¼ 1)

Pb
j;t load power of shiftable load j at hour t (kW)

Ibj;t binary status indices of shiftable load j at hour t (when
load is on, Ibj;t ¼ 1)

Pb
k;t charge power of EV k at hour t (kW)

Ibk;t binary charge status indices of EV k at hour t (when EV
is charged, Ibk;t ¼ 1)

Ebk;t SOC of EV k at hour t
P g
t power purchased from grid at hour t (kW)

PV
i;t solar power generation of unit i at hour t (kW)

PS
i;t battery charge/discharge power of battery i at hour t

(kW)
Pd;i;t ;Pc;i;t discharge power/charge power of battery i at hour t

(kW)
Id;i;t ;Ic;i;t discharge/charge binary status indices of battery i at

hour t (when battery discharges/charges,
Id;i;t ¼ 1=Ic;i;t ¼ 1)

Ei;t SOC of battery i at hour t
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consumption in cities, and those projects are currently in high-
speed progress. One of the projects has been conducted in Suzhou,
Jiangsu Province, China, where the residential community partici-
pates in DR through advanced metering infrastructure (AMI) coor-
dinated by load aggregator (LA). The DR structure of the
community is shown in Fig. 2. Each particular interruptible load
and controllable load of household is connected with smart meters.
The smart meters record and transport the load data to LA, and
delivers the scheduling signals from LA to controllers of each load
such as smart plug, control module of air conditioner, etc. to realize
the aggregation and direct dispatch of each load by LA. Time-of-use
(TOU) and critical peak pricing (CPP) DR programs are currently
considered to be tested on this community in different days, and
the test of real time pricing (RTP) and interruptible loads (IL) pro-
grams are also concerned in the future. Therefore, this particular
Please cite this article in press as: Nan S et al. Optimal residential community de
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DR structure requests for a novel optimal scheduling tool to apply
price-based and incentive-based DR programs, which dives and
supports the work of this paper.

There are some researches on residential DR in recent years,
most of which are from the United States and European countries.
Ref. [3] presents a control strategy for all controllable loads in a
single house based on TOU tariffs. Refs. [4,5] build DR control
model for heating, ventilating and air conditioning (HVAC) system
of one house. Ref. [6] presents a scheduling model for shiftable
loads of household. Refs. [7,8] build a DR model for single house
considering thermal storage system. Refs. [9–13] build specific
DR models for HVAC, energy storage system (ESS), electric vehicle
(EV), and shiftable loads respectively, and combine them to a
complete DR model of single building. Ref. [14] presents a real-
time DR management approach for household utilizing stochastic
mand response scheduling in smart grid. Appl Energy (2017), http://dx.doi.
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Fig. 1. Components of smart residential community load and distributed
generation.
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optimization and robust optimization. However, those studies did
not consider the circumstances of scheduling the entire residential
community that consists of numbers of households. Papers [15–
20] discuss the centralized DR dispatch for one specific category
of applications respectively. Refs. [15,16] study the DR control
model for all HVACs in residential community. Ref. [17] presents
a DR control approach for building heating systems. Ref. [18] stud-
ies the control strategy on the smart plug of residential load via
signing contract with customers. Ref. [19] focuses on household
distributed energy storage dispatch strategies, and Ref. [20] intro-
duces an optimal scheduling for residential battery storage with
solar PV. In addition, a technical and economical assessment has
been done upon the storages installed to customer-side in [21].
Nevertheless, the works above did not involve the situation that
contains multiple types of loads. Refs. [22–27] discuss the DR with
multi households. Ref. [22] proposes a methodology for optimal
bidding in a day-ahead market for micro grid incorporating the
uncertainty of solar power, whereas the biding model is mainly
focused on DG and the loads are assumed to be uncontrollable.
Ref. [23] schedules residential power with three modes based on
electricity cost and users’ satisfaction of comfort, yet without pro-
viding detailed model of power applications. Ref. [24] presents an
algorithm for distributed demand response, where residents are
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building #1

Load 
Aggregator

Grid Res
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Fig. 2. Smart residential com
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not aggregated and scheduled by LA. Ref. [25] presents a direct
load control (DLC) approach for large-scale residential DR, which,
however, is not suitable for day-ahead DR scheduling where
price-based DR program and IL program are mainly employed.
Studies in [26,27] focus on DR of residential energy hub where
electric and natural gas loads are combined and managed opti-
mally. However, the structure of smart residential community dif-
fers from that of residential energy hub, thus resulting in requests
for a distinct DR scheme. Therefore, energy hub optimization
approaches are not compatible for the smart residential commu-
nity. In summary, there is not yet a particular scheme that entirely
settles smart residential community DR problem where each par-
ticular load in household is aggregated and directly dispatched
by LA.

At present, price-based and incentive-based DR programs are
mainly TOU, CPP, RTP programs, and IL program respectively. This
paper proposes a DR strategy for the newly built residential com-
munity in smart grid where residential loads are aggregated and
directly dispatched by LA. The paper also presents an optimal
scheduling model performed by LA and focusing on the DR pro-
grams above. Multiple load applications and DG in the community
are modeled in detail and optimally scheduled. The proposed
scheme can significantly exert the potential DR ability of the smart
residential community. The model dramatically reduces the cus-
tomer’s electricity cost and decreases the peak load and peak-
valley difference of residential load without bringing discomfort
to the users. In addition, it can also provide support for decisions
of electricity pricing strategies under power market development.

In the rest of this paper, firstly the loads in community based on
various DR strategies are classified, and the optimum dispatch
model is built in detail for interruptible and controllable loads. Sec-
ondly, a complete community DR scheduling model is formulated
from the model above incorporating DR optimization of multiple
DG. Lastly, the effectiveness of this model is simulated and con-
firmed on smart residential community of a smart grid application
demonstration project in Suzhou, Jiangsu province, China., and the
results of cases under different price-based DR programs are
discussed.
2. Smart residential community DR scheduling model

According to the presence of price-based and incentive-based
DR programs, this paper models the DR scheduling of residential
community load considering IL combined with either TOU, CPP
or RTP program. LA receives market day-ahead price signal and
IL tariff at first. Then it optimizes the dispatch of residential load
EV
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via smart meters, and schedules the day-ahead (24 h) residential
load curve.

In advanceof the formulation of this problem, all the decision vari-
ables in this scheduling problem are defined and listed as follows:

Continuous variables:
Curtailed power of user j at hour t (kW) Pl
j;t;

Power of illumination load j at hour t (kW) Pa
j;t;

Air conditioner temperature of air conditioner k at hour t
(�C) Tk;t;
Temperature adjustment of air conditioner k at hour t (�C)
when it is turned on T g

k;t;

Load power of air conditioner k at hour t (kW) Pa
k;t;

Temperature set point of air conditioner k at hour t (�C) Ts
k;t;

Load power of shiftable load j at hour t (kW) Pb
j;t;

Charge power of EV k at hour t (kW) Pb
k;t;

Power purchased from grid at hour t (kW) P g
t ;

Battery change/discharge power of battery i at hour t (kW)
PS
i;t;

Discharge power/charge power of battery i at hour t (kW)
Pd;i;t , Pc;i;t .

Binary variables:

Status indices of interruptible load j at hour t Ilj;t;
Status indices of adjustment of illumination load j at hour t
Iaj;t ;

Status indices of adjustment of air conditioner k at hour t Iak;t ;

Status indices of shiftable load j at hour t Ibj;t ;

Charge status indices of EV k at hour t Ibk;t ;
Discharge/Charge binary status indices of battery i at hour t
Id;i;t , Ic;i;t .

2.1. Residential community load DR model

Residential loads are divided into three categories based on dif-
ferent DR strategies in this paper, which are interruptible load,
adjustable load, and shiftable load. Interruptible load participates
in DR through IL program. When the load responds, the total load
power would drop for a large volume, which means the load is
completely curtailed. Unlike interruptible load, adjustable load is
not entirely curtailed during the response period, but decreases
by small proportion of power instead, hence the load curve
changes smoothly. Shiftable load differs from those two above. It
does not reduce the total electricity consumption during DR pro-
gram, but shifts the operation cycle duration optimally.

2.1.1. Interruptible load
This category of loads does not include controllable load appli-

ance, so the loads are not responsive to the price-based DR program.
In other words, these loads do not decrease when affected by elec-
tricity price, or can be shifted to low price hours. However, they can
join the IL program through smart plug by signing contracts. Cus-
tomers can choose which of their loads to join IL program voluntar-
ily based on their own electricity usage habit. During load peak
hours, when grid power supply is insufficient for load demand or
electricity price is extremely high, customers would curtail partial
load according to IL contract agreement. The interruptible load DR
problem constraints are modeled as follows [28]. The curtailed
power at each hour cannot exceed the maximum curtailable power
and the original load power (1), (3). Total curtail hours are
restricted by maximum daily curtailable hours (2).

0 6 Pl
j;t 6 Ilj;tP

l;max
j ð1Þ
Please cite this article in press as: Nan S et al. Optimal residential community de
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X
t

Ilj;t 6 Xl;max
j ð2Þ

Pl
j;t 6 PL

j;t ð3Þ
2.1.2. Adjustable load
Adjustable loads, such as illumination load, air conditioning

load, etc., can adjust their power demand to participate in DR pro-
gram. When hourly price is high, these loads would partially
reduce power to a lower consumption level. Residents can set a
price threshold value and power adjustment level to their adjusta-
ble loads based on their acceptable comfort. When the hourly real-
time electricity price is higher than the price threshold, the power
consumption level of load would decrease to a lower volume set by
users. For instance, illumination load would dim brightness to the
preset degree, and air conditioning load would adjust temperature
set point to reduce power.

Illumination load DR problem constraints are modeled as
follows:

Pa
j;t ¼ Pa;base

j;t ð1� Iaj;tÞ þ Pa;min
j;t Iaj;t ð4Þ

e qt � qa;min
j;t

� �
< Iaj;t 6 e qt � qa;min

j;t

� �
þ 1 ð5Þ

When the real-time price qt is higher than the price threshold

qa;min
j;t , the binary status index of adjustment of illumination load

Iaj;t ¼ 1 (5), and the illumination load power decreases from Pa;base
j;t

to Pa;min
j;t (4).
Air conditioning temperature state evolution is modeled with

discrete time difference equation, which is commonly used in liter-
atures [9,29] as follows:

Tk;tþ1 ¼ akTk;t þ ð1� akÞðTak;t � T g
k;tÞ ð6Þ

ak ¼ e�Dt=CkRk ð7Þ

T g
k;t ¼

RkgkP
a
k;t cooling mode

�RkgkP
a
k;t heating mode

(
ð8Þ

Pmin
k 6 Pa

k;t 6 Pmax
k ð9Þ

Tk;t ¼ Ts
k;t ð10Þ

The internal temperature of air conditioner at hour t + 1 is
described as a function of the internal temperature, ambient
temperature, and the temperature adjustment at the hour t in
(6). System inertia of air conditioner ak is defined in (7). The trans-
formation of air conditioner power to temperature adjustment is
described in (8), and the air conditioner power is limited by its
maximum and minimum value (9). The air conditioner internal
temperature should be equal to the temperature set point (10).

This paper employs an adjustment control for air conditioner in
cooling mode based on the model above and is formulated as fol-
lows, which can easily be modified for heating mode as well:

Ts
k;t ¼ Ts;base

k;t ð1� Iak;tÞ þ Ts;max
k;t Iak;t ð11Þ

eðqt � qa;min
k;t Þ < Iak;t 6 eðqt � qa;min

k;t Þ þ 1 ð12Þ
When the real-time price qt is higher than the price threshold

qa;min
k;t , the binary status index of adjustment of air conditioner

Iak;t ¼ 1 (12), and the temperature set point rises from Ts;base
k;t to

Ts;max
k;t (11).
mand response scheduling in smart grid. Appl Energy (2017), http://dx.doi.
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2.1.3. Shiftable load
Operation duration time of these controllable loads can be

shifted to low price period in accordance with the price signal. This
paper divides shiftable load into two categories. One of them
includes rice cooker, dryer, washing machine, and other similar
loads. The other one is EV load.

2.1.3.1. Rice cooker and washing machine load. The feature of this
type of load is that it consumes a fixed total amount of electric
energy in a fixed period (i.e. cycle duration). Once the load is
turned on, it will remain on for the duration of its cycles until it fin-
ishes one cycle. Although the load may consume different power
volume at different time during the cycle (e.g. washing and drying
stages of washing machine), the total quantity of energy consump-
tion is fixed and cannot be divided into separate time periods.
Therefore, a fixed average power is proposed to represent the
power consumption amount at each hour of duration (13). The
total energy usage can be represented as a product of average
power multiplied by cycle duration time. Customers can set an
operating time window (i.e. preferred start and end hours) for
those loads. The load can be turned on at any time during the oper-
ating time window, and should be operated for one cycle during
the operating time window (14)(16). The load DR problem con-
straints are formulated as follows:

Pb
j;t ¼ Pb;average

j Ibj;t ð13Þ

Xb;on
j;ðt�1Þ � Ub

j

h i
Ibj;ðt�1Þ � Ibj;t
h i

P 0 ð14Þ

Xb;on
j;t ¼

Xt

t¼s
Ibj;t ð15Þ

XT
t¼s

Ibj;t ¼ Ub
j ð16Þ
2.1.3.2. EV load. EV charge time window is from the home arrival
time of the final trip in the day (i.e. EV plug-in time) to the depar-
ture time of the next day (i.e. end of charge time). Since EV actual
charge duration is shorter than the time window, the decision of
charging or not and the value of charging power at each hour

can be made in (17). The state of charge (SOC) of EV at hour t Eb
k;t

is equal to the SOC at the last hour Eb
k;t�1 plus the charge power

(18). EV should be fully charged in advance of customer’s depar-
ture time (19). The EV’s SOC at each hour is limited by its battery
capacity (20).

Pb;min
k Ibk;t 6 Pb

k;t 6 Pb;max
k Ibk;t ðTa 6 t 6 TbÞ ð17Þ

Eb
k;t ¼ Eb

k;t�1 þ Pb
k;tDt=E

max
k ð18Þ

Eb
k;Tb

¼ 1 ð19Þ

Eb
k;t 6 1 ð20Þ
In circumstance of multiple EVs in the community, the stochas-

tic profile of the EV initial SOC Eb
k;Ta and home arrival time of the

final trip Ta should be concerned. Residents’ EV daily mileage is
close to a logarithmic normal distribution. Besides, EV initial SOC
is approximately linear related to its daily mileage. Thus, the prob-
ability density function of EV initial SOC can be obtained as follows
[30]:
Please cite this article in press as: Nan S et al. Optimal residential community de
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f ðEb
k;Ta Þ ¼

1ffiffiffiffiffiffiffi
2p

p
Dð1� Eb

k;Ta Þrd

� exp �
lnð1� Eb

k;Ta Þ þ lnD� ld

h i2
2r2

d

8><
>:

9>=
>;

ð21Þ
where rd and ld are the mean and standard deviation parameters
respectively. Home arrival time of the final trip Ta is close to a nor-
mal distribution curve. This paper uses a normal distribution func-
tion to describe the home arrival time of the community EVs
[31,32].

2.2. Complete residential community DR scheduling model

In addition to electricity consuming load, renewable energy DG
and ESS are also integrated to the smart residential community. On
those of demand sides where photovoltaic solar panel is installed,
solar power consumption takes precedence, and the residual load
is supplied by both ESS and grid. The objective function of this
model is to minimize the purchased electricity cost of residents
(22).

Min
X
t

qtP
g
t �

X
t

X
j

ql
jP

l
j;t ð22Þ

The power of both demand side load and grid side supply
should meet the power balance constraint (23).X
i

PV
i;t þ

X
i

PS
i;t þ P g

t ¼
X
j

ðPL
j;t � Pl

j;tÞ þ
X
j

Pa
j;t þ

X
k

Pa
k;t

þ
X
j

Pb
j;t þ

X
k

Pb
k;t ð23Þ

To prevent a large portion of load to be scheduled to low price
hours which may create new peaks, the purchased grid power is
restricted by (24).

Pg;min 6 P g
t 6 Pg;max ð24Þ

Roof-top solar panels are uncontrollable DG. Since total residen-
tial load is considerably higher than solar power generation, this
paper assumes all solar power is only used by the community
instead of exported to the grid. The solar power output is consid-
ered as a constant input to the presented model in this paper.

ESS battery constraints are formulated as follows:

PS
i;t ¼ Pd;i;t � Pc;i;t ð25Þ

Id;i;t þ Ic;i;t 6 1 ð26Þ

Ic;i;tP
min
c;i 6 Pc;i;t 6 Ic;i;tP

max
c;i ð27Þ

Id;i;tP
min
d;i 6 Pd;i;t 6 Id;i;tP

max
d;i ð28Þ

Ei;t ¼ Ei;ðt�1Þ � Pd;i;t � 1gS
i

� gS
i Pc;i;t

� �
Dt=Emax

i ð29Þ

Emin
i =Emax

i 6 Ei;t 6 1 ð30Þ

Ei;0 ¼ Ei;NT ð31Þ
When the battery discharges, it performances as a power

source. On the other hand, when it charges, it acts as a load (25).
Battery cannot charge or discharge at the same time (26). The bat-
tery hourly charge and discharge power are restricted by (27) and
(28) respectively. Eqs. (29) and (30) are battery SOC constraints,
namely, the battery cannot charge when its SOC reaches 1, or dis-
charge when its SOC reaches the minimum value. The initial SOC is
equal to the SOC at the end of the scheduling hour (31).
mand response scheduling in smart grid. Appl Energy (2017), http://dx.doi.
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To sum up, LA schedules the residential community load and
DG on the objective of minimizing total power purchase cost under
different DR programs. This model optimizes the day-ahead (24 h)
power scheduling of residential community considering IL com-
bined with TOU or CPP or RTP. The complete model is formulated
as follows:

Min
X
t

qtP
g
t �

X
t

X
j

ql
jP

l
j;t ð22Þ
0
50

1 3 5 7 9 11 13 15 17 19 21 23

Ill
um

Time (h)
s:t:
ð1Þ—ð20Þ
ð23Þ—ð31Þ

�

This problem is a mixed integer linear programming (MILP)
problem which is solved by CPLEX in this paper.
Fig. 4. Original illumination load.
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Fig. 5. Forecasted daily temperature.
3. Case study

3.1. Case study description

The case study data are mainly acquired from smart residential
community of a smart grid application demonstration project in
Suzhou, Jiangsu Province, China. Suzhou city is located at southeast
of China, where residential loads rise to high level during summer
time. In order to examine the ultimate performance of the schedul-
ing model, load data in July 25, 2016, which is considered as a typ-
ical summer day of Suzhou, have been chosen for the simulation.
Each household is equipped with 3 smart meters connected with
three categories of loads, namely interruptible loads, adjustable
loads, and shiftable loads, respectively. The original interruptible
load and the controllable load data are acquired from the smart
meters. Solar power output is acquired from the historical data
of the community. Total data of 200 households are selected for
simulation. Since the smart community is a demonstration project,
the parameters of the household loads are considered to be unified
to accelerate the calculation in this case.

3.1.1. Interruptible load
Interruptible load curtailment tariff ql ¼ 15 (¥/kW h). Maxi-

mum IL curtail hours Xl;max ¼ 2 (h). Maximum IL daily curtailed

power Pl;max ¼ 100 (kW h). The original interruptible load is shown
in Fig. 3.

3.1.2. Adjustable load
3.1.2.1. Illumination load. When the hourly price is higher than the
threshold qa;min ¼ 0:54 (¥/kW h), illumination load at hour t

reduces its power from Pa;base
t (kW) by 20% to its minimum power

Pa;min
t (kW). The original illumination load is shown in Fig. 4.
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Fig. 3. Original interruptible load.
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3.1.2.2. Air conditioning load. The system inertia a ¼ 0:82, the ther-
mal resistance R = 2 (�C/kW), the working efficiency factor g = 2.5,
the maximum and minimum power of each air conditioner are 0
(kW) and 3.5 (kW) respectively, and the original temperature set

point Ts;base ¼ 23 (�C). When the hourly price is higher than the
threshold qa;min ¼ 0:54 (¥/kW h), the maximum temperature
Ts;max ¼ 24 (�C). The number of air conditioners is 300. Forecasted
daily temperature Tat is shown in Fig. 5.
3.1.3. Shiftable load
The numbers of rice cookers and washing machines are 200

respectively, and other data is listed in Table 1.

The EV maximum and minimum charge power Pb;min
k , Pb;max

k are
0 (kW) and 3.3 (kW) respectively, the EV battery capacity Emax

k ¼ 16
(kW h), the EV maximum daily mileage D ¼ 40 (mile), and the fac-
tors of EVs daily mileage logarithmic normal distribution density
function are ld ¼ 2:319 and rd ¼ 0:88. The EVs arrive home at dif-
ferent time according to a normal probability distribution function
with the mean at 17:00 and the variance of 0.5 h. The end of charg-
ing time Tb is set to 24:00 (h), and the number of EVs is 100.
Table 1
Shiftable load data.

Shiftable load Average
power (kW)

Cycle
duration (h)

User defined time
window

Start time (h) End time (h)

Rice cooker 1.5 2 16 20
Washing machine 0.6 1 9 17
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Fig. 6. Solar power output.

Table 2
Storage battery properties data.

Min charge/discharge power (kW) 0
Max charge/discharge power (kW) 150
Max stored energy (kW h) 500
Min stored energy (kW h) 100
Initial SOC 0.4
Inverter efficiency (charge/discharge) 85%/85%
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3.1.4. DG
The sample mean of solar power based on the historical data of

the community is considered as the actual solar power output in
this case. The solar generation power of 24 h is shown in Fig. 6.
The storage battery properties data are shown in Table 2.
3.1.5. Electricity price data
This paper studies 3 price-based DR programs, which are TOU,

CPP, and RTP, in 3 cases respectively.

TOU: on-peak hours (15–18 h) price = 0.66 (¥/kW h), mid-peak
hours (8–14 h and 19–20 h) price = 0.45 (¥/kW h), and off-peak
hours (other hours) price = 0.21 (¥/kW h).
CPP: Critical-peak hours (15–18 h) price = 1.5 (¥/kW h), on-
peak hours (12–14 h) price = 0.63 (¥/kW h), mid-peak hours
(8–11 h and 19–20 h) price = 0.42 (¥/kW h), off-peak hours
(other hours) price = 0.18 (¥/kW h).
RTP: Forecasted RTP price is shown in Fig. 7.
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Fig. 7. Forecasted RTP price.
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3.2. Case study results

This paper studies the stochastic properties of EV using Monte
Carlo simulation by 1000 times in MATLAB. The simulation result
displays the residential load curve under 3 different price-based
DR programs. Firstly, the case of TOU is taken as instance for sim-
ulation by one time to study the community DR result of interrupt-
ible load, controllable load, and controllable DG respectively.

DR result of interruptible load participating in IL program is
shown in Table 3. The load is curtailed by 100 kW at 17 h and
18 h respectively.

DR result of illumination load participating in TOU program is
shown in Table 4. The total reduced energy consumption during
on-peak hours (15–18 h) is 271kW h.

DR result of air conditioner participating in TOU program is
shown in Fig. 8. The peak load reduces from 960 kW to 933 kW,
and the time of peak appearance delays from 15th to 18th hour.
The total air conditioning energy consumption is reduced by 180
kW h.

DR results of rice cooker and washing machine load participat-
ing in TOU program are shown in Table 5. Since the pre-set time
window for washing machine is 9–17 h, the original start hour is
at low price hour, hence the washing machine load is not shifted.
However, the original rice cooker working hour starts at peak hour,
therefore the load operation starting time is postponed by 3 h to
mid-peak hour in the pre-set time window (16–20 h).
Table 3
Curtailment of Interruptible load participating in IL
program.

Curtailed power (kW) Load curtailment time (h)

100 17
100 18

Table 4
Adjustment of illumination load participating in TOU program.

Adjusted illumination load power (kW) Load adjustment time (h)

65 15
67 16
69 17
70 18
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0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

1 3 5 7 9 11 13 15 17 19 21 23

Lo
ad

 p
ow

er
 (k

w
)

Time (h)

Fig. 11. Residential load without DR program.

1200
1400
1600
1800
2000
2200

er
 (k

w
)

0

0.2

0.4

0.6

0.8

1

1.2

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23

Pr
ic

e 
(¥

/k
W

h)

Lo
ad

 p
ow

er
 (k

w
)

Time (h)
Original air conditioning load
Air conditioning load with TOU
TOU price

Fig. 8. Air conditioning load participating in TOU program.

Table 5
Time shift of rice cooker and washing machine load participating in TOU program.

Operation start
time (h)

Operation end
time (h)

Original rice cooker load 16 17
Original washing machine load 9 9
Rice cooker load with TOU 19 20
Washing machine load with TOU 9 9
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DR result of EV load participating in TOU program is shown in
Fig. 9. Before participating in TOU program, EV load is mostly cen-
tralized in on-peak and mid-peak hours. When TOU is applied,
95.9% of the original load from on-peak and mid-peak hours is
shifted to off-peak hours, which is a significant shift value.

DR result of battery storage participating in TOU program is
shown in Fig. 10. The battery charges (i.e. negative power in the
Fig. 10) during off-peak hours and discharges during on-peak
hours, and managed to shave the peak and fill the valley of the
demand side load curve.

Secondly, the DR scheduling results of the complete residential
community are analyzed and discussed in 3 cases of IL combined
with TOU, CPP, and RTP respectively.

Residential load curve without DR program is shown in Fig. 11.
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Fig. 9. EV load participating in TOU program.
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Fig. 12. Residential load with TOU and IL programs.
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Case1: Residential load curve with TOU and IL programs is
shown in Fig. 12. After participating in TOU and IL programs,
the residential peak load decreases from 1988.21 kW to
1909.90 kW by 3.94%. Besides, the time of load peak appearance
is shifted from 17th to 19th hour, and the peak-valley deference
decreases from 1036.59 kW to 942.90 kW by 9.04%. The total
energy consumption reduces by 0.29%, and the total power pur-
chase cost is 10585.93¥.
nd response scheduling in smart grid. Appl Energy (2017), http://dx.doi.
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Fig. 13. Residential load with CPP and IL programs.
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Case 2: Residential load curve with CPP and IL programs is
shown in Fig. 13. After participating in CPP and IL programs,
the peak load decreases to 1909.90 kW by 3.94%, and the time
of load peak appearance is shifted from 17th to 19th hour.
The peak-valley deference decreases to 942.60 kW by 9.04%.
The community total energy consumption reduces by 1.07%,
and the total power purchase cost is 15933.03¥.
Case 3: Residential load curve with RTP and IL programs is
shown in Fig. 14. It is the same with case 1 and 2 that the peak
load decreases to 1909.90 kW, the time of load peak appearance
is shifted to 19th hour. However, the peak-valley deference
decreases to 958.28 kW by 7.56%. In comparison to case 1 and
2, the community total energy consumption reduces by 1.52%,
and the total power purchase cost is 12595.54¥.

3.3. Case analysis and discussion

It can be observed from the cases results above that the peak
load and peak-valley difference are dramatically reduced in 3 cases
respectively, where results in case 1 and 2 have superior perfor-
mance than case 3. The load peak appearance time in cases are
all shifted to 19th hour, which is beneficial to alleviate the power
load of the grid in daylight. Fig. 15 shows the comparison of the
total energy consumption and the total power purchase cost
among 3 cases. According to the 3 cases results, although the peak
load reductions are the same, the peak-valley deference decrement
Please cite this article in press as: Nan S et al. Optimal residential community de
org/10.1016/j.apenergy.2017.06.066
in case 1 and 2 are more than case 3. The total energy consumption
in case 3 is less than other cases. However, customers power pur-
chase cost in case 1 is the lowest among 3 cases. Besides, in com-
parison to case 1, the load curves in case 2 and 3 are more volatile,
which is not conducive for the generation with low ramping rate to
respond load variation. In summary, it can be indicated from the
results that the CPP and RTP program in this case study needs
improvement to achieve superior DR result. The TOU combined
with IL is the optimal DR program in this case, and the residential
community optimally responds under this program.

4. Conclusions

The appearance of the smart residential community brings an
unprecedented challenge to residential DR scheduling in power
market. This paper presents a DR scheduling model for smart res-
idential community based on the residential load dispatch through
LA. The model optimally schedules the residential loads under dif-
ferent price-based DR programs combined with IL program. The
objective of the model is to minimize the user’s electricity con-
sumption cost. It optimally schedules the entire community DR
resources under different DR programs without interfering cus-
tomers comfort, which reduces the user’s cost of electricity, and
simultaneously decreases the residential peak load, load peak-
valley difference and energy consumption. The residential commu-
nity’s DR potentiality is significantly stimulated through this
model. In addition, it can be noticed from the case study that anal-
ysis upon the scheduled load curves can be done to compare differ-
ent DR programs, through which an optimal DR program can be
decided. Therefore, the model can also provide support for electric-
ity pricing scheme determination under electric power market
development.

Acknowledgments

This work was supported by National Key R&D Program of
China (2016YFB0901104) and National Natural Science Foundation
of China (51577061).

References

[1] Rieger A, Thummert R, Fridgen G, Kahlen M, Ketter W. Estimating the benefits
of cooperation in a residential microgrid: a data-driven approach. Appl Energy
2016;180:130–41.

[2] Siano P, Sarno D. Assessing the benefits of residential demand response in a
real time distribution energy market. Appl Energy 2016;161:533–51.
mand response scheduling in smart grid. Appl Energy (2017), http://dx.doi.

http://refhub.elsevier.com/S0306-2619(17)30819-X/h0005
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0005
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0005
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0010
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0010
http://dx.doi.org/10.1016/j.apenergy.2017.06.066
http://dx.doi.org/10.1016/j.apenergy.2017.06.066


10 S. Nan et al. / Applied Energy xxx (2017) xxx–xxx
[3] Pallonetto F, Oxizidis S, Milano F, Finn D. The effect of time-of-use tariffs on the
demand response flexibility of an all-electric smart-grid-ready dwelling.
Energy Build 2016;128:56–67.

[4] Yoon JH, Baldick R, Novoselac A. Dynamic demand response controller based
on real-time retail price for residential buildings. IEEE Trans Smart Grid
2014;5:121–9.

[5] Yoon JH, Bladick R, Novoselac A. Demand response for residential buildings
based on dynamic price of electricity. Energy Build 2014;80:531–41.

[6] Setlhaolo D, Xia XH, Zhang JF. Optimal scheduling of household appliances for
demand response. Electr Power Syst Res 2014;116:24–8.

[7] Shafie-khah M, Kheradmand M, Javadi S, Azenha M, de Aguiar JLB, Castro-
Gomes J, et al. Optimal behavior of responsive residential demand considering
hybrid phase change materials. Appl Energy 2016;163:81–92.

[8] Alimohammadisagvand B, Jokisalo J, Kilpeläinen S, Ali M, Sirén K. Cost-optimal
thermal energy storage system for a residential building with heat pump
heating and demand response control. Appl Energy 2016;174.

[9] Paterakis NG, Erdinc O, Bakirtzis AG, Catalao JPS. Optimal household
appliances scheduling under day-ahead pricing and load-shaping demand
response strategies. IEEE Trans Ind Inform 2015;11:1509–19.

[10] Shao SN, Pipattanasomporn M, Rahman S. Development of physical-based
demand response-enabled residential load models. IEEE Trans Power Syst
2013;28:607–14.

[11] Erdinc O, Paterakis NG, Mendes TDP, Bakirtzis AG, Catalao JPS. Smart
household operation considering Bi-directional EV and ESS utilization by
real-time pricing-based DR. IEEE Trans Smart Grid 2015;6:1281–91.

[12] Zhang D, Li SH, Sun M, O’Neill Z. An optimal and learning-based demand
response and home energy management system. IEEE Trans Smart Grid
2016;7:1790–801.

[13] Sharma I, Dong J, Malikopoulos AA, Street M, Ostrowski J, Kuruganti T, et al. A
modeling framework for optimal energy management of a residential building.
Energy Build 2016;130:55–63.

[14] Chen Z, Wu L, Fu Y. Real-time price-based demand response management for
residential appliances via stochastic optimization and robust optimization.
IEEE Trans Smart Grid 2012;3:1822–31.

[15] Cole WJ, Rhodes JD, Gorman W, Perez KX, Webber ME, Edgar TF. Community-
scale residential air conditioning control for effective grid management. Appl
Energy 2014;130:428–36.

[16] Yin RX, Kara EC, Li YP, DeForest N, Wang K, Yong TY, et al. Quantifying
flexibility of commercial and residential loads for demand response using
setpoint changes. Appl Energy 2016;177:149–64.

[17] Bianchini G, Casini M, Vicino A, Zarrilli D. Demand-response in building
heating systems: a model predictive control approach. Appl Energy
2016;168:159–70.

[18] Li WT, Yuen C, Ul Hassan N, Tushar W, Wen CK, Wood KL, et al. Demand
response management for residential smart grid: from theory to practice. IEEE
Access. 2015;3:2431–40.
Please cite this article in press as: Nan S et al. Optimal residential community de
org/10.1016/j.apenergy.2017.06.066
[19] Zheng ML, Meinrenken CJ, Lackner KS. Smart households: dispatch strategies
and economic analysis of distributed energy storage for residential peak
shaving. Appl Energ. 2015;147:246–57.

[20] Ratnam EL, Weller SR, Kellett CM. Scheduling residential battery storage with
solar PV: Assessing the benefits of net metering. Appl Energy
2015;155:881–91.

[21] Graditi G, Ippolito MG, Telaretti E, Zizzo G. Technical and economical
assessment of distributed electrochemical storages for load shifting
applications: an Italian case study. Renew Sustain Energy Rev
2016;57:515–23.

[22] Ferruzzi G, Cervone G, Delle Monache L, Graditi G, Jacobone F. Optimal bidding
in a day-ahead energy market for micro grid under uncertainty in renewable
energy production. Energy 2016;106:194–202.

[23] Ma K, Yao T, Yang J, Guan X. Residential power scheduling for demand
response in smart grid. Int J Electr Power Energy Syst 2016;78:320–5.

[24] Fan Z. A distributed demand response algorithm and its application to PHEV
charging in smart grids. IEEE Trans Smart Grid 2012;3:1280–90.

[25] Chen C, Wang JH, Kishore S. A distributed direct load control approach for
large-scale residential demand response. IEEE Trans Power Syst
2014;29:2219–28.

[26] Rastegar M, Fotuhi-Firuzabad M. Load management in a residential energy hub
with renewable distributed energy resources. Energy Build 2015;107:234–42.

[27] Brahman F, Honarmand M, Jadid S. Optimal electrical and thermal energy
management of a residential energy hub, integrating demand response and
energy storage system. Energy Build 2015;90:65–75.

[28] Sahebi MM, Duki EA, Kia M, Soroudi A, Ehsan M. Simultanous emergency
demand response programming and unit commitment programming in
comparison with interruptible load contracts. IET Gener Transm Dis.
2012;6:605–11.

[29] Mathieu JL. Lawrence Berkeley Nat. Lab. Modeling, analysis, and control of
demand response resources. Ph.D. dissertation. http://escholarship.org/uc/
item/7pm9p24f; 2013 [accessed 17.02.22].

[30] Cai DF, Qian B, Chen JF, Yao MQ. Analysis on dynamic probabilistic
characteristic of power grid connected with electric vehicle charging load
and wind power. Power System Technol 2013;3:590–6 [in Chinese].

[31] Taylor J, Maitra A, Alexander M, Brooks D, Duvall M. Evaluation of the impact
of plug-in electric vehicle loading on distribution system operations. IEEE Pow
Ener Soc Ge 2009:2076–81.

[32] Shao SN, Pipattanasomporn M, Rahman S. Grid integration of electric vehicles
and demand response with customer choice. IEEE Trans Smart Grid
2012;3:543–50.
mand response scheduling in smart grid. Appl Energy (2017), http://dx.doi.

http://refhub.elsevier.com/S0306-2619(17)30819-X/h0015
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0015
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0015
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0020
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0020
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0020
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0025
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0025
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0030
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0030
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0035
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0035
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0035
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0040
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0040
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0040
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0045
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0045
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0045
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0050
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0050
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0050
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0055
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0055
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0055
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0060
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0060
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0060
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0065
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0065
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0065
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0070
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0070
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0070
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0075
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0075
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0075
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0080
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0080
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0080
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0085
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0085
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0085
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0090
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0090
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0090
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0095
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0095
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0095
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0100
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0100
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0100
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0105
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0105
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0105
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0105
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0110
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0110
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0110
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0115
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0115
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0120
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0120
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0125
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0125
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0125
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0130
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0130
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0135
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0135
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0135
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0140
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0140
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0140
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0140
http://escholarship.org/uc/item/7pm9p24f
http://escholarship.org/uc/item/7pm9p24f
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0150
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0150
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0150
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0155
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0155
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0155
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0160
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0160
http://refhub.elsevier.com/S0306-2619(17)30819-X/h0160
http://dx.doi.org/10.1016/j.apenergy.2017.06.066
http://dx.doi.org/10.1016/j.apenergy.2017.06.066

	Optimal residential community demand response scheduling in smart grid
	1 Introduction
	2 Smart residential community DR scheduling model
	2.1 Residential community load DR model
	2.1.1 Interruptible load
	2.1.2 Adjustable load
	2.1.3 Shiftable load
	2.1.3.1 Rice cooker and washing machine load
	2.1.3.2 EV load


	2.2 Complete residential community DR scheduling model

	3 Case study
	3.1 Case study description
	3.1.1 Interruptible load
	3.1.2 Adjustable load
	3.1.2.1 Illumination load
	3.1.2.2 Air conditioning load

	3.1.3 Shiftable load
	3.1.4 DG
	3.1.5 Electricity price data

	3.2 Case study results
	3.3 Case analysis and discussion

	4 Conclusions
	Acknowledgments
	References


