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Electricity power is a basic industrial componentwhich plays an important role in the economy of a nation.
In this paper, the correlations evolutionof electricity prices among50 states and theDistrict of Columbia are
studied based on random matrix theory (RMT) Four regime shifts are identified from January 1990 to
August 2014 in the U.S. residential, commercial and industrial electricity markets. Then, the genetic algo-
rithm (GA) is applied to analyze the clusters of evolution. The results show that, the correlations of electric-
ity prices increased continually in the three departments. However, it decreased in 2012 which further
confirms its sensitivity to fuel market. Besides, four regime shifts exist in the three departments though
the different times of occurrence caused by price level. And, the fluctuation of community evolution is con-
sistent with four regime shifts. The final part is a summary of the research analyzed and results.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Electricity industry [1–5] is the foundation of national economy,
and electricity price affects expenditure in other fields as well as
the living standard of residents directly or indirectly. In the
1980s, the reform of electricity industry overtook the world
[6–9]. Western countries lost the regulations to restructure and
establish a competitive electricity market, which has spread in
the global electricity market. In the U.S., most of electricity indus-
tries are privatized [10,11]. Electricity industry reforms mainly
means reducing regulation while increasing competition in spite
of the programs of reform being different for regions. The purpose
is to fuse market mechanism into electricity industry, to optimize
and improve the allocation and efficiency of resources using com-
petition and privatization.
In recent years, one of the most important commodities for
national development and people’s life is the electricity market,
and policy makers and researchers are increasingly concerned
about. It should be mentioned that related surveys on electricity
market have been conducted by a few researchers and organiza-
tions. Torrent-Fontbona et al. [12] proposed a new method that,
given the demanded power of close consumers for a time window
(power profile), electricity costs were reduced by reallocating the
demanded power among consumers in order to keep all of them
belowor equal to their contractedpower. Cappers et al. [13] summa-
rized the existing contribution of DemandResponse resources in the
U.S. electricitymarkets, and concluded that competition is critical to
the development of electricity markets. A more recent update was
accomplished by Castagneto-Gissey et al. [14] in 2014 on European
electricity market. They analyzed the interactions of a representa-
tive sample of 13 European electricity spot prices during the period
2007–2012 based on complex network theory. Their model estab-
lishes a time-varying network describing the evolving influences
among the European electricity prices, and detects important
changes in market integration. Similar surveys have also been
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conducted in other part of the world. For example, by using a frac-
tional co-integration analysis, de Menezes Lilian et al. [15] showed
that long memory for price shocks and co-integration exist only
for a fewmarkets, such as Germany, Netherlands and France. Subse-
quent survey, Pereira and Pronto [16] proposed a multistage
stochastic optimization method for planning energy systems based
on the approximation of the expected cost to go functions through
the introduction of piecewise linear functions. Albadi and El-
Saadany [17] applied an optimal power flow to economic dispatch
including load forecast. The electricity prices for each period of the
next day were calculated considering price elasticity. Ketter et al.
[18] used an energymarket simulator to study the dynamics of cus-
tomer and retailer decision making. They introduced a coalition of
customers and proposed a novel methodology to reduce electricity
costs from the view of terminal consumer point. Wang and Li [19]
reported a survey of Time-of-Use (TOU) pricing programs targeted
industrial customers, and examined various industrial scenarios to
predict electricity cost savings when customers were facing the
transition from flat rates to TOU pricing.

The existing literatures has provided a solid empirical investiga-
tion and a good reference to understand the evolution of certain
electricity markets around the world, but some studies of U.S. elec-
tricity market still needs to be further researched. The U.S. electric-
ity market is one of the largest electricity markets in the world and
the first country to reform. Two reasons supported the study of the
U.S. electricity market. The first being its mature operation mech-
anism and supervision systems and the other are being the higher
market competition. This paper researches the correlation coeffi-
cient of electricity price, and identifies the influencing factors
whether they relate to policy, climate, geographical location, or
distribution of coal resources. Our objective is to explore the prin-
ciple of U.S. electricity market from the angle of electricity price
and provide a reference for future research in the electricity mar-
ket. We hope this research could be used to facilitate reforms in
China’s electricity market, as well as help energy investors to
assess potential risk of the whole electricity market.

Motivated by these facts, this paper applies the RMT to the elec-
tricity market. First, the calculated parameters of electricity prices
for 50 states and the District of Columbia are calculated by the
method of RMT, with our focus on the correlations, eigenvalues
and eigenvectors for the three departments. Secondly, we then pro-
ceedwith themechanisms of electricitymarket reformaswell as the
influencing factors. Then, the evolutionary characteristics of the
electricity market are detected. Lastly, we identify and determine
the important shift periods and some stylized facts of the actual
Fig. 1. Variation of electricity production in the U.S. Note: (a) Electricity production b
resources.
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electricitymarket themethodof least-squares regression. This study
reveals the main influencing factors in the regime shifts which are
detected in the electricity market. Timely adjustment of policy in
developing the electricitymarketwouldbe given in accordancewith
the conclusions which are summarized from the analysis of the cor-
relation between regime shifts and influencing factors.

The continuing parts of this paper is as follows: Section 2, the
basic situation of the U.S. electricity market is introduced. Data
sources and methods are showed in Section 3. In Section 4, the
empirical study of the electricity prices for residential, commercial
and industrial arepresented. Section5provides concluding remarks.
2. Present situation of the U.S. electricity market

The U.S. has the largest and most advanced economies in the
world with large total installed capacity and electricity consump-
tion in the world. Coal-electricity is the main generating mode
due to its rich coal resource. Therefore, the situation from the per-
spective of generation capacity, electric structure and electricity
consumption is analyzed as follows.

2.1. Generation capacity and electricity structure

In the U.S., the generation capacity increased from 2000 to
2014. Data used in this part is downloaded from EIA [20]. In
2009, it decreased obviously as shown in Fig. 1(a and b). The elec-
tricity sources are mainly coal-electricity, gas-electricity and
nuclear-electricity. However, the proportions of coal-electricity
and gas-electricity have changed recently.

From the structure of generation capacity, the percentage of
nuclear-electric varies between 19%–20%, while conventional
hydroelectric is in the vicinity of 6–7%. However, the change in fuel
oil-electricity is obvious declining from 3% to 0.7%, and will keep
declining according to the national policy. Due to the adjustment
in coal-electricity and gas-electricity in 2005, the percentage of
coal-electricity declined from 52% to 38% while gas-electricity
increased from 16% to 27%. However, coal-electricity has been
recovering in 2012. In addition, conventional hydro-electricity and
nuclear-electricity have remained in a stable level over a decade.

2.2. Electricity price

The U.S. is a federal country, and its electricity regulatory system
also complies with federal and state government. It is therefore
y energy resources. (b) Variation of electricity production percentage by energy
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obvious that the pricing of states would be different. Let us take the
multi-step electricity pricing of residential as an example. In Vir-
ginia, the primary electricity need of a family is 800 kilowatt-
hours (kW h) per month and if the electricity consumption exceeds
800 kW h, the family will pay extra electricity cost. In Vermont, the
primary electricity of every family is 750 kW h and the second elec-
tricity quota of 1500 kW h per month. In Arizona, the primary elec-
tricity need of every family is 700 kW h in summer and the price is
10.6 cents/kW h within a range. The price is 12.4 cents/kW h when
the electricity consumption exceeds 700 kW h any additional
kW h up to 2000 kW h. However, if the consumption exceeds
2000 kW h, the family pays 16 cents/kW h. In the spring and
autumn, the price of primary electricity is 10 cents/kW h, and the
price inwinter is cheaper. Thus, it can be seen that, there is large dif-
ference between the multi-step residential electricity pricing of 50
states and the District of Columbia.

The electricity prices in the U.S. are not unified due to different
states having different policies and costs. In the U.S., every state
takes its actual situation into consideration in the electricity pric-
ing. For instance, Pennsylvania and Arizona consider seasonal fac-
tors into the electricity pricing.

3. Data and methods

In this section, we introduce our source of data and methodol-
ogy. The purpose of our study is to investigate the transformation
of electricity market development in the U.S.

3.1. Data

In this paper, the data of electricity prices are divided into three
kinds: residential, commercial and industrial for 50 states and the
District of Columbia and the U.S. electricity price. The data is
recordedmonthly from1990M1 to 2014M8, given a total of 296 val-
ues [20].

The electricity consumption of U.S. shows an increasing trend for
the last 15 years. Fig. 2displays the electricity consumption indiffer-
ent departments in the U.S. In 2014, the proportion of residential,
commercial and industrial consumption were 36.33%, 35.15%, and
24.74%, respectively. It can be observed that the proportion of indus-
trial consumption shows a downward trend. While the commercial
and residential consumption [21,22] keep the upward pattern.

3.2. Moving windows and correlation coefficient

We denote PiðtÞ the t-month electricity price of i-state
(i ¼ 1;2;3 . . .51). Then, the logarithmic return at time t is defined
as
Fig. 2. Variation of electricity consumption percentage by main sectors in the U.S.
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riðtÞ ¼ ln PiðtÞ � ln Piðt � 1Þ ð1Þ
For each moving window [t � s + 1, t] at time t of size s, we com-

pute the correlation matrix CðtÞ, whose element Cij is the Pearson
correlation coefficient [23] between the return time series of the
U.S. states i and j.

Cij ¼ 1
rirj

Xt

t�sþ1

½riðkÞ � ui�½rjðkÞ � uj� ð2Þ

where ui is the sample means of the i-state in each moving window.
ri and rj are the standard deviations of states i and j in each moving
window, respectively.

To estimate the empirical correlation matrix and minimize the
unavoidable statistical uncertainty, we use a large window con-
taining a large number of data points [24].

Although large windows reduce our ability to investigate the
fast dynamics in correlation studies, the correlation matrix is no
longer invertible when the window size is smaller than the 51 time
series in our study (50 states + District of Columbia) [25], implying
smin ¼ 51. We set the value at s ¼ 60 months, giving us 237 moving
windows for investigation.

3.3. Determining deviating eigenvalues

For each t larger or equal to t ¼ 1990=M1, we calculate the cor-
relation matrix CðtÞ and compute its 51 eigenvalues
fkn : n ¼ 1; . . . ;51g. Then, we sort the eigenvalues fkng in descend-
ing order and calculate the corresponding eigenvectors

UnðtÞ ¼ ½un;1ðtÞ; . . . ;un;51ðtÞ�T .
If M is a T � N matrix with mean 0 and variance r2 ¼ 1, we

define C ¼ 1
T M

TM. In the limit N ! 1; T ! 1 where Q ¼ T=N P 1
is fixed, the probability density f RMTðkÞ of eigenvalues k of matrix
C is f RMTðkÞ ¼ Q

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkmax � kÞðk� kminÞ=k
p

, where k 2 kmin; kmax½ � and
kmin;max ¼ 1þ 1=Q � 2

ffiffiffiffiffiffiffiffiffi
1=Q

p
. If an eigenvalue k is greater than

kmax and thus deviates from the prediction of the RMT [24,26], its
eigenvector frequently contains valuable information about mar-
ket dynamics.

In real-world data, however, the limit conditions N ! 1 and
T ! 1 are never fulfilled and some finite-size effect should be
included in the RMT studies. In order to identify the deviating
eigenvalues, we thus randomize the housing index time series to
eliminate any temporal correlations. Then, we calculate a new cor-
relation matrix CRnd from the randomized return time series, and
compute the corresponding 51 eigenvalues. Although the density
functions f RMTðkÞ and f RndðkÞ overlap to a great degree, they exhibit
some differences in the right-hand tail. We find that f RndðkÞ is not
bounded by the maximum eigenvalue kmax predicted by the RMT.

3.4. Least-squares regression

For each eigenvalue kn we construct its Eigen portfolio. The
returns of which we calculate by

Rnðt0Þ ¼ UT
nðt0Þ � rðt0Þ ð3Þ

where t0 ¼ t � sþ 1; . . . ; t, and rðt0Þ ¼ ½r1ðt0Þ; . . . ; r51ðt0Þ�T is a vector
whose components are state-level electricity price returns defined
in Eq. (1). To evaluate the collective market information embedded
in kn, we investigate the following linear regressive model between
Rnðt0Þ and the return Rðt0Þ of the U.S. electricity price

Rnðt0Þ ¼ knðtÞRðt0Þ þ eðt0Þ: ð4Þ
where R is defined in Eq. (1) by the overall price index of residential,
commercial and industrial in the U.S. respectively. Rn and R are nor-
malized respectively to zero mean and unit variance [27], and knðtÞ
S electricity market based on price fluctuations. Appl Energy (2016), http://
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is the regression coefficient between Rn and R at time t0. If kn differs
significantly from 0, we assume the eigenvalue kn contains impor-
tant information because the corresponding Eigen portfolio is corre-
lated with the entire electricity market [27]. To estimate the value
of kn, we perform an ordinary least squares linear regression.
3.5. State clustering

It is considered widely for GA to study the clustering in 51
states. We represent states as nodes. lij means the edges between
two states. Here, wij denote the correlation coefficient between
states i and j. If wij P V , we set lij ¼ 1, else lij ¼ 0
(wmin < V < wmax) [28]. Data of one moving window form a single
complex network. Therefore, there are 237 networks in time series
in this study for residential, commercial and industrial, respec-
tively. Then the evolution property of clusters (or community)
[29–33] is analyzed based on GA.

To evaluate the quality of the partitions, we introduced the
algorithm developed by Girvan and Newman [34]. The modularity
[35] measures the density of links inside communities compared to
links between communities, and can be used to evaluate the qual-
ity of the partitions obtained by a method. The modularity is
defined as

M ¼
X

ðeii � a2i Þ ¼ trðeÞ � ke2k ð5Þ

where eij means the fraction of all edges in the network that link
nodes in community i to nodes in community j. trðeÞ ¼ P

ieii gives
the fraction of all edges in the network that connect nodes in the
same community. ai ¼

P
jeij denote the fraction of edges that con-

nect to nodes in community i.
4. Empirical analysis of the U.S. electricity market

In this section, the average correlation coefficients, eigenvalues
and eigenvectors, evolvement of clusters and shift periods are ana-
lyzed in detail.
4.1. Correlation coefficient

The average correlation coefficients is analyzed first, then we
analyze the eigenvalues and eigenvectors of electricity price in
each department. This gives the average correlation coefficients
with the time evolution in U.S. electricity market according to Sec-
tion 3.2. Fig. 3 gives the average correlation coefficients calculated
by Eq. (2) for each moving windows during the last two decades.
Fig. 3. Evolution of average correlation coefficients for electricity prices. Note: The error
time t.
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It is considered widely for cost plus method to regulate electric-
ity price in spite of the different pricing mechanisms in the U.S. In
addition, most of them adopt stepwise pricing. If the quantity of
electricity that consumers used exceeds a certain limit, the unit
price of electricity will be increased. However, the electricity prices
of states are different due to the policy and cost of generation
plants. Notably is California, for its success in energy-saving, is a
typical example. The unit electricity price in California for residen-
tial are divided into five categories which is proportional to the
amount of consumption. Residents have their preferential price
options if their quantity of electricity consumption is within the
baseline. California public utilities regulatory committee formu-
lates the baseline with cognizance to location, seasons and the
sources of household energy.

The average correlation coefficients increase rapidly in recent
years as shown in Fig. 3. Thus, it indicates that the electricity price
of 50 states and the District of Columbia (including residential,
commercial, and industrial) become strongly correlated progres-
sively with time. In 2000, the electricity structure was adjusted
by the U.S. government. It increased the proportion of gas-
electricity, and reduced the coal-electricity. Lesser capital, shorter
construction period and taken full advantage of capacity are
advantages of gas-electricity. However, cost associated with coal-
electricity is transportation which depends on the distribution of
coal deposits. As a result of adjustment, the correlation of electric-
ity price became higher. With these changes, the correlation of the
states’ electricity prices is noticeable, although their pricing mech-
anism is independent.

In Fig. 3, the average correlation coefficients of the three depart-
ments have declined obviously in 2012 (see Fig. 1). This indicates
that the electricity price of 50 states and the District of Columbia
become less correlated because of the recovering of coal-
electricity. Therefore, uneven distribution of coal resources lead
to the various generating cost for states directly which has dropped
the average correlation coefficients. However, the occurred time is
different from each other in the three departments. It demon-
strated that the occurrence of regime shifts is in proportion to price
level. Moreover, the situation also illustrates that higher correla-
tion coefficient can reflect the real market information. This is
due to the largest correlation for residential electricity market.
4.2. Eigenvalues and eigenvectors

The eigenvalues and eigenvectors are analyzed with the
algorithm in Section 3.3 and the results are shown in Figs. 4 and
5. The eigenvalues of residential is the largest in the three
departments. The size of eigenvalue is positive proportional to
bar is the standard deviation of the PDF (Probability Distribution Function) for each
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the amount of information which it contains. Fig. 4 shows that the
largest eigenvalue k1 of C(t) is larger than the maximum eigenvalue
kmax predicted by the RMT. For the second largest eigenvalue k2, we
find k2 > kmax for all C(t) matrices. We also find that the third lar-
gest eigenvalue k3 is slightly larger than kmax. In contrast, the fourth
largest eigenvalue k4 and the fifth largest eigenvalue k5 fall well
within the range of f RMTðkÞ and f RndðkÞ (see Fig. 4). The eigenvalues
k1, k2 and k3 thus contain information about nontrivial spatiotem-
poral properties of the U.S. electricity market dynamics. In this
paper, we removed the eigenvalue k3 in our investigation. The rea-
son is that the eigenvalue k3 of residential electricity price is less
than kmax at some time.

Fig. 5 presents the eigenvectors of the three departments. Most
of the components of the eigenvectors were positive and a few
negative for the 50 states and the District of Columbia for some
period of time in the residential electricity market. The compo-
nents also exhibited sudden fluctuations during 2000–2005, which
led to the sudden transformation in electricity market. In the U.S.
electricity market, the eigenvectors of the largest eigenvalues con-
tain much richer information. The existence of five regimes is
observed and the eigenvector components persist in each regime.

Starting with the first eigenvector U1 of residential electricity
market, we study its components over time for different regimes.
In regime R1, the components are almost positive. It means that
the electricity pricing of states shows some general character in
some extent. In contrast, Fig. 5(a) clearly shows that, after
1999M11 and during the second regime, many components of the
first eigenvector U1 turn from positive to negative. Before 2000,
the electricity mainly comes from coal-electricity. After 2000, the
U.S. has adjusted the structure of the electricity generation, increas-
ing the natural gas-electricity generations and reducing coal-
electricity generations. This led to most states carrying out electric-
ity reformwhichdiversified the electricity pricingof each state. Dur-
ing the period from 1990M1 to 1999M11, negative components of
U1 are approximately corresponding to the North Eastern region
of the U.S. which means the largest eigenvector U1 partitions the
states into two groups. The states with negative components are
predominantly the states with low electricity price and situated in
the North Eastern region of the U.S with rich coal resource and con-
venient transportation. For the eigenvector U2 of residential elec-
tricity market we find a comparable number of negligible positive
and negative components, and it is not completely clear what infor-
mation they carried in the U.S. states electricity market.

In Fig. 5, unlike the residential electricity, the information con-
tained in commercial and industrial is sparse. This phenomenon is
Please cite this article in press as: Sun M et al. Identifying regime shifts in the U
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also reflected in Section 4.1. Low correlation coefficient cannot
reflect the real market information and the details are presented
in Section 4.3. The correlation coefficient of commercial is the min-
imum as compared to the residential and industrial.
4.3. Shift periods

To investigate the possible collective market information
embedded in the deviating eigenvalues, we compare the returns
of the Eigen portfolio with the U.S. electricity price returns. In this
part, the least-squares regression results obtained for the electric-
ity market are reported. To identify the different shift periods, we
locate sudden transformation in the evolution of different variables
using qualitative and quantitative methods. Then, the coefficients
of regression are analyzed according to the method described in
Section 3.4. The first class of variables is the degree of commonality
quantified by knðtÞ for the deviating eigenvalues as shown in Fig. 6.
If the absolute change jknðt þ 1Þ � knðtÞj is significantly greater than
the average of the absolute changes around t, t is identified as a
possible regime shift point. For the evolution of eigenvectors in
Fig. 5, if there appears to be significantly less similarity between
two successive eigenvectors UnðtÞ and Unðt þ 1Þ, t is a possible
regime shift point. The regime shifts depends on the union of K1

and K2. Comparing the results from different variables can thus
serve as a method of cross-validation. Thus to design a reliable
method of period identification, we clearly need to construct math-
ematical models that include the kind of regime shift seen in the U.
S. electricity market.
4.3.1. Results obtained from residential electricity market
Fig. 6(a) shows that the regression coefficient k1 between R(t0)

and R1(t0) is larger for the first five years, and then drops from
0.8236 (1999M11) to 0.5695 (1999M12). Then, K1 decreased from
0.2518 (2005M3) to 0.4605 (2005M4) gradually. Subsequently, K1

declined from 0.2029 (2007M9) to 0.1405 (2007M10). This behav-
ior for k1 over time indicates that, we can approximately
identify three regime shifts for four time periods: [1990M1,
1999M11], [1999M12, 2005M3], [2005M4, 2007M9] and
[2007M10, 2014M8]. We find that the three regime shifts in
Fig. 6(a) virtually overlap with the three local minima in the time
dependence of k1 in Fig. 4(a). Therefore, this suggests that the three
regime shifts are more credible. Then, Fig. 6(b) shows two regime
shifts: [1990M1, 2010M8] and [2010M9, 2014M8] which, surpris-
ingly, are identical to those we found for k1. Using the four regime
S electricity market based on price fluctuations. Appl Energy (2016), http://
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shifts in Fig. 6(a) and (b), we identify five periods: R1 = [1990M1,
1999M11], R2 = [1999M12, 2005M3], R3 = [2005M4, 2007M9],
R4 = [2007M10, 2010M8] and R5 = [2010M9, 2014M8].

4.3.2. Results obtained from commercial electricity market
Fig. 6(c) shows that the regression coefficient K1 is larger for the

first five years and remains close to 1. It drops from 0.8836
Please cite this article in press as: Sun M et al. Identifying regime shifts in the U
dx.doi.org/10.1016/j.apenergy.2016.04.032
(2000M6) to 0.6195 (2000M7). K1 further drops rapidly from
0.2118 (2005M5) to 0.1505 (2005M6) but it rises from 0.2629
(2010M6) to 0.1605 (2010M7) slowly. We can approximately
identify four periods: [1990M1, 2000M6], [2000M7, 2005M5],
[2005M6, 2010M6] and [2010M7, 2014M8]. Similarly, the three
regime shifts in Fig. 6(c) virtually overlap with the three local
minima in the time dependence of k1 in Fig. 4(b). This is a highly
S electricity market based on price fluctuations. Appl Energy (2016), http://
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reliable evidence. There are three periods: [1990M1, 2000M6],
[2000M7, 2007M12] and [2008M1, 2014M8] in Fig. 4(d). According
to the four regime shifts in Fig. 6(c)–(d), we examine five periods:
R1 = [1990M1, 2000M6], R2 = [2000M7, 2005M5], R3 = [2005M6,
2007M12], R4 = [2008M1, 2010M6] and R5 = [2010M7, 2014M8].

4.3.3. Results obtained from industrial electricity market
Fig. 6(e) and (f) are the regressive results of the industrial elec-

tricity price. Fig. 6(e) shows that the regression coefficient K1 is
large for the first five years. K1 then dropped from 0.7936
(2000M8) to 0.6915 (2000M9). Subsequently, the K1 rapidly
decline from 0.2108 (2005M9) to 0.1605 (2005M10). It also slightly
rose from 0.2015 (2007M10) to 0.3905 (2007M11), then stabilized.
It changed from 0.3890 (2010M9) to 0.4759 (2010M10). So it pre-
sents five periods: [1990M1, 2000M8], [2000M9, 2005M9],
[2005M10, 2007M10], [2007M11, 2010M9] and [2010M10,
2014M8]. Moreover, Fig. 6(f) shows two periods: [1990M1,
2005M9], [2005M10, 2014M8]. These coincide with the periods
shown in Fig. 6(e). Based on the above analysis, five periods are
demonstrated: R1 = [1990M1, 2000M8], R2 = [2000M9, 2005M9],
R3 = [2005M10, 2007M10], R4 = [2007M11, 2010M9] and R5 =
[2010M10, 2014M8] according to Fig. 6(e)–(f).

The cross-validation of the four regime shifts in the six plots of
Fig. 6 indicates that, our identification of the different periods is
valid. We concluded that, the time of shift regimes occurred in resi-
dential, commercial and industrial are inconsistent. The time that
regime shifts happened in residential are earliest, whereas that of
commercial and industrial are later. For instance, the percentage
of coal-electricity and gas-electricity achieve stability in 2005. How-
ever, the turning point of residential, commercial and industrial
appear in 2005M3, 2005M5, and 2005M9, respectively. The electric-
ity prices of the three departments are different accordingly. The
electricity price level of residential is the highest, while the indus-
trial is lowest. It is obvious that, the turning points is affected by
the electricity price. We draw a novel conclusion from the analysis.
The regime shifts in commercial and industrial markets exhibits
hysteric patterns compared with residential which has the highest
price level. It shows that the occurrence of regime shifts is in propor-
tion toprice level.Moreover, the situationalso illustrates that higher
correlation coefficient can reflect the realmarket information due to
the largest correlation for residential electricity market.

knðtÞ reflects the electricity market commonness knðtÞ in U.S.
electricity market when it is high, otherwise the electricity market
diversified. Fig. 6 shows, the value of K1 is high before 2000 in
Please cite this article in press as: Sun M et al. Identifying regime shifts in the U
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residential, commercial and industrial. In this period, coal-
electricity is the main electricity source. Moreover, each state
adopted the traditional electricity pricing. These two factors con-
tribute to the commonness in 50 states and the District of Colum-
bia. The value of K1 declined gradually after 2000 indicating that,
the electricity market of U.S. is being diversified. Reasons are as fol-
lowing: firstly, gas-electricity units increased gradually with coal-
electric declining. In addition, the share of new energy electricity
generation increased. Secondly, with the reforms in electricity
market in the U.S., the electricity pricing of each state has been
formed differently. We then analyze the five periods, in detail.

As show in Fig. 6(a), the value of K is larger in period R1, k1
which is market commonness–quantified by the regression
coefficient K1 between R(t0) and R1(t0). It means that the electricity
market presents some commonness in the electricity pricing, and
the oneness of electricity generation contributed to the common-
ness. Coal-electricity account for more than 50% of the electricity
capacity and its proportion hardly fluctuations. Thus, the main
influencing factor of electricity price is limited to coal cost and
resource distribution. This is due to the oneness in electricity
generation.

In period R2, the value of K1 decreases gradually. The electricity
market commonness becomes substantially weaker than that in
period R1 which indicated that, the electricity market commonness
is absent and the sources of electricity industry become diversified.
The percentage of gas-electricity units gradually increased. On the
contrary, the scale of coal-electricity units declined dramatically.
Coal-electricity and gas-electricity have become the main options
in electricity industry. It implies that, the electricity pricing of
states also presents options and, the electricity market also being
diversified gradually. It is consistent with Fig. 1. The proportion
of gas-electricity units reached a steady state after the adjustment
of R2. This status was kept in period R3 in the U.S. electricity
market until 2007.

In period R4, the outbreak of subprime crisis and the financial
crisis have greatly influenced the international order which caused
credit crunch effect in financial markets. The recession in financial
sector caused great negative impact on the fuel market, including
coal and natural gas industry. This had a simultaneous effect on
the electricity industry. The electricity market experienced fluctu-
ation due to the influence of the financial crisis on energy sources.
Period R5 is mainly influenced by the shale gas. Under the pressure
of environmentally friendly energy, the exploitation of shale gas
becomes popular by energy investors. The gas production reached
S electricity market based on price fluctuations. Appl Energy (2016), http://
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a historic peak in 2011 with the cost of gas-electricity generation
being lower than coal-electricity. This transformation has a great
impact on the electricity market of the U.S.

4.4. Evolvement of state clusters

To confirm the five periods and better understand the
spatiotemporal dynamics of the U.S. electricity market at the state
level, we partition the states into clusters for each time t. We
analyze the cluster and the corresponding modularity of 51 state
prices according to the method introduced in Section 3.5. Fig. 7
shows the evolution of states clusters and modularity of the three
departments.

Modularity is one of the standards which measure the quality of
the community division. The values of M(t) are approximate to 0.2,
and they fluctuate within the range ±0.05. This suggests that U.S.
electricity market has a strong community structure and the
clusters are reasonable. From Fig. 7, the points of sudden change
are consistent with the four regime shifts of the three departments
Fig. 8. Evolution of regional correlation coefficient. Note: The red symbols the
evolution of the price correlation coefficient between the Maryland and Pennsyl-
vania, while the green means the evolution of correlation coefficient of the
northeast industrial district. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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we have discussed. For the residential electricity market, the clus-
ters are unstable with a large number of states shifting between
clusters in Fig. 7(a). Meanwhile Fig. 7(b) and (c) imply that the fluc-
tuation of community evolution are relatively stable in the indus-
trial and commercial departments. The clusters in three
departments are relevant to diverse electricity prices. We draw
an important conclusion that, the price level influences the evolu-
tion of community. In addition, the communities’ fluctuations were
caused by financial crisis in 2007. This mean that, factors influenc-
ing unstable clusters evolution is not uniquely diversity electricity
price but also economic and generation distribution.

Fig. 8 shows the price correlation coefficient between the Mary-
land and Pennsylvania, and the evolution of correlation coefficient
of the North Eastern industrial district. The North Eastern indus-
trial district included Maine, Vermont, New Hampshire, Connecti-
cut, New Jersey, Delaware, Wisconsin, Michigan, Illinois, Indiana,
Ohio, Pennsylvania, Maryland, Kansas, and West Virginia. It can
be found that the correlation coefficient between Maryland and
Pennsylvania is larger than North Eastern industrial district. Two
reasons explains this phenomenon. Firstly, Pennsylvania and
Maryland have rich coal resource and convenient transportation.
They are near to the great lakes. The great lakes forms the main
part of their inland water transport It’s the one of the important
traffic line of coal which provides cheap transportation. Moreover,
from the perspective of geography, Maryland is bordered by Penn-
sylvania. Secondly, Maryland and Pennsylvania belong to the PJM
market. In the PJM market, market members send the bidding
plans of next day to service center at 8:00–12:00 in every day.
The service center of PJM evaluate the bidding plan of each mem-
ber according to the system information which includes expected
user demand, climate, transmission, etc. at 12:00–14:00 every
day. The system then selects the most effective and economic
operation mode. At 14:00–16:00 every day the service center of
PJM sends the result of evaluation to members. The center of PJM
also does some adjustments according to the requirement of relia-
bility from the 16:00 to the next day 8:00. PJM market is a fluent
and dynamic electricity market. Maryland and Pennsylvania are
the members of the PJM market which contribute to the high cor-
relation coefficient. In addition, in the evolution of community,
Maryland and Pennsylvania are in the same community.
S electricity market based on price fluctuations. Appl Energy (2016), http://
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5. Conclusions

This paper studied the average correlations evolution of electric-
ity price among 50 states and theDistrict of Columbia in theU.S. res-
idential, commercial and industrial electricity markets. The
uncertain influence from fuel market is analyzed in detail based on
eigenvalue and eigenvector of RMT. Four regime shifts with five
periods are identified in the three departments by qualitative and
quantitative methods simultaneously. Using empirical studies, we
arrive at some useful conclusions and they are as follows;

First, the average correlation coefficients increased continu-
ously in the three electricity markets which reflects the common-
ness of electricity market. This phenomenon is affected by the
adjustment of the proportion for gas-electricity and coal-
electricity directly. However, the average correlation coefficients
decreased in 2012 due to the coal-electricity recovering, which
explains its sensitivity to fuel market further.

Secondly, four regime shifts exist in the three departments even
though there are different times of occurrence. The regime shifts in
commercial and industrial markets have the hysteric pattern com-
pare with residential which has the highest price level. It showed
that the occurrence of regime shifts is in proportion to price level.
The research on clusters evolution of 50 states and the District of
Columbia in the three departments also verified the result.

The method used in this paper is verifiable, and it can be applied
to electricity markets in other regions such as European Union,
Japan and Korea. With this method, the regime shifts in the process
of electricity market reform can be identified, and the hidden
mechanism for the market can be revealed.

The process of electricity market reform in China is still slow,
but the future directions are clear. Electricity price reform is
regarded as one of the major policies to enhance the reform of elec-
tricity market in many developing and transitioning economies.
Analyses of the barriers as well as drivers of the reform can provide
references for policy makers. Thus, two policy suggestions are pro-
posed from our results; first, the energy structure for generation
must be optimized before the implementation of electricity market
reforms. In China, the uneven distribution of energy resources
results in the complexity of electricity structure. Grasping the
development direction of electricity structure before proposing
reforms in the electricity market is essential. Secondly, the higher
electricity price for consumers, the more timely reflections when
there are fluctuations in electricity market according to our results.
In china, the industrial electricity price is the highest in all depart-
ments. Policy makers can adjust the reform plan of the whole elec-
tricity market according to industrial inputs to reduce the risk in
the reform of the electricity market.

Finally, it is expected that electricity price reforms would be
further promoted and to provide comprehensive suggestions for
policy makers. Therefore, in order to make constructive sugges-
tions for decision makers, researchers need to make further
research on the drivers and barriers of electricity price reforms
(such as energy structure for generation and the level of electricity
price), and explore the feasible path of reform as well as comple-
mentary policies to reduce uncertainties.
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