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The Energy Hub has become an important concept for formally optimizing multi-carrier energy infras-
tructure to increase system flexibility and efficiency. The existence of energy storage within energy hubs
enables the dynamic coordination of energy supply and demand against varying energy tariffs and local
renewable generation to save energy cost. The battery lifetime cost may be included in the optimization
objective function to better utilize battery for long term use. However, the operational optimization of an
interconnected energy hub system with battery lifetime considered presents a highly constrained, multi-
period, non-convex problem. This paper proposes Particle Swarm Optimization (PSO) hybridised with a
numerical method, referred to collectively as the decomposition technique. It decouples the complicated
optimization problem into sub-problems, namely the scheduling of storage and other elements in the
energy hub system, and separately solves these by PSO and the numerical method ‘interior-point’. This
approach thus overcomes the disadvantages of numerical methods and artificial intelligence algorithms
that suffer from convergence only to a local minimum or prohibitive computation times, respectively. The
new approach is applied to an example two-hub system and a three-hub system over a time horizon of
24 h. It is also applied to a large eleven-hub system to test the performance of the approach and discuss
the potential applications. The results demonstrate that the method is capable of achieving very near the
global minimum, verified by an analytical approach, and is fast enough to allow an online, receding time
horizon implementation.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Energy hub modelling relates to the utilization of co-generation
or tri-generation, which increases system flexibility by means of
exploiting every available energy carrier, such as electricity, gas,
and heat [1,2]. A typical energy hub contains multiple energy car-
riers, which achieves the function of importing, exporting, convert-
ing, and storing energy [3,4]. The energy hub approach takes
advantage of existing infrastructures as much as possible and can
be applied to various sizes of the energy system. Domestic build-
ings are modelled in this paper, which consume approximately
40% of society’s total energy [5] but an individual domestic load
profile is fairly stochastic such that it cannot always be met with
onsite generation. Interconnecting heterogeneous energy infras-
tructure at local level can best leverage renewable generation
and pooled storage without suffering large distance transmission
losses and enable self-sufficient energy communities.
The optimal operation of an energy hub system enables the
effective utilization of the elements within the system to minimize
energy use, monetary cost or emissions, or some weighted combi-
nation of these objectives. Different algorithms have been applied
to the multi-hub optimization problem. Ref. [6] presents a decom-
posed solution of a multi-agent genetic algorithm to optimize the
power and gas flow between energy hubs. Papers [7,8] employ
model predictive control (MPC) to optimally control the operation
of three interconnected energy hubs, although numerical methods
are applied within the MPC scheme, so a global minimum cannot
be guaranteed in the solution. In [9,10], a grid of 10 hubs is mod-
elled, where the energy transfer between hubs is formulated as a
non-cooperative game. The existence of the unique Nash equilib-
rium is proved. Refs. [11,12] propose an integrated demand
response program and simulate the scheme on a smart grid of
six energy hubs. The integrated demand response problem is for-
mulated as an ordinal potential game and the Nash equilibrium
is proven to be unique. Ref. [13] investigates the performance of
an energy management system under different energy pricing
schemes for a group of 10 hubs. Ref. [14] introduces the ‘‘smart
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energy hub” system which uses a cloud computing platform to
enable customers with must run loads to participate in a demand
side management program. Ref. [15] investigates the optimization
performance between deterministic and stochastic approaches
applied to multi-period optimization for a 3-hub system over a
mixed industrial and residential area. Ref. [16] generates a novel
mathematical model for storage, general appliances, and other
renewable components in residential houses. Mixed integer linear
programming (MILP) is applied to optimize the control for residen-
tial energy hubs considering end-user preferences.

Refs. [9–15] propose the optimization for multi-hubs. However,
storage is not considered when the problem is formulated as a
non-convex problem in [9–12]. In Ref. [13], the storage is modelled
in the energy hub optimization, but the problem is formulated as a
convex problem. The optimal operation of multiple hubs with
energy storage and interconnection available between hubs has
hitherto been formulated as a highly constrained, non-linear
multi-period optimization. However, the lifetime of the battery
system suffers as its utilization increases, an aspect which has
not been addressed in previous energy hub literature. In this paper,
the battery lifetime cost is calculated and included in the objective
function based on the method proposed by [17]. Therefore, the
optimization problem is formulated as a non-convex, multi-
period problem.

Numerical algorithms such as MILP provide fast computation
times, but perform poorly when solving non-convex problems,
because the solver can easily fall into local minima. Alternatively,
particle swarm optimization (PSO) and related optimization
approaches have been applied to optimize the operation of power
systems due to their straightforward implementation and high
efficiency [18]. For example, multi-pass iteration PSO was applied
to the optimal scheduling of a battery coupled with wind turbine
generators [19]. Co-evolutionary PSO was applied to smart home
operation strategies [20]. A hybrid algorithm combining PSO and
a bacterial foraging algorithm was proposed and applied to the
optimal scheduling of an active distribution network [21].

Despite high robustness and accuracy compared with other
algorithms [19], PSO has never been applied to solve energy hub
optimization problems. However, conventional PSO is not suitable
for solving highly-constrained non-linear problems with a large
number of variables where the feasible region is narrow in hun-
dreds of dimensions, meaning the time spent on finding feasible
particles is considerable. Thus, improvement to conventional PSO
is required in order to fully harness its potential for multi-hub opti-
mization. This paper proposes a decomposed solution by applying
a novel hybrid PSO and numerical optimization by combining con-
ventional PSO with the ‘interior point’ method. Each particle in the
PSO routine represents the storage operations over the whole opti-
mization time horizon (24 h in this paper). Based on the storage
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operation, the ‘interior-point’ algorithm is applied to optimize
the operations of other elements in the system of energy hubs over
24 h. The resulting energy cost over the full 24 h time horizon is
formulated as the fitness score. All particles then are updated
based on the conventional PSO routine until the optimization com-
pletes. The decomposition technique is demonstrated to be capable
of optimizing multi-energy hubs efficiently, and the storage oper-
ation obtained from the decomposition technique is benchmarked
to be very close to the theoretical optimal strategy of storage. Addi-
tionally, the decomposed PSO yields better optimization results
with less computation compared with the conventional PSO. The
approach is applied to two energy hub systems to illustrate its
effectiveness. The main contributions of this paper are illustrated
as follows:

(i) A decomposition technique of applying particle swarm opti-
mization is proposed in this paper, and it is capable of solv-
ing the non-convex multi-period optimization problem. The
decomposition technique is validated by a simple two-hub
system for which the theoretical minimum can be derived
empirically.

(ii) A group of residential houses is simulated as an intercon-
nected energy hub system, an optimization problem is
expressed to minimize the total cost of the energy hub sys-
tem over 24 h. With the battery lifetime cost considered in
the optimization, the problem is formulated as a non-
convex problem. The decomposed PSO approach is applied
to optimally solve the problem. The optimization results
indicate that the battery SOC varies between 60% and 90%
to avoid unnecessary degradation of the battery lifetime
for three residential hubs.

(iii) The performance of the decomposed PSO approach is com-
pared with the conventional PSO being applied to solve a
same three-hub problem. The decomposition technique
achieves a 58% greater energy saving for three-hub opti-
mization with 98% saving of computation time comparing
with the conventional PSO.

This paper is organized in six sections. Section 2 illustrates the
general optimization problems for multi-energy hubs which the
energy interconnection is enabled between hubs. An explicit
description of the decomposition technique applying PSO is pre-
sented in Section 3. Section 4 presents the case studies and related
results. Section 5 concludes the paper.

2. Energy hub optimization

2.1. Energy hub modelling

A typical energy hub model that enables energy sharing
between hubs is shown in Fig. 1. It consumes various input
resources including electricity from grid (Pele), solar energy (Pso),
and gas (Pgas) to meet the electricity load (Lele) and thermal load
(Lth). The energy flow between hubs is denoted by Erh and Hrh ,
which indicate the power and heat exchange with other hubs.
The mathematical formulation between hub inputs and outputs
under steady state operation is shown in (1).
The first matrix on the right hand side is the coupling matrix C,
which defines the relationship between inputs P and outputs L. The
parameter t within the brackets indicates that these variables are
time dependent. Since the problem is considered in a discretized
time domain, they are fixed in each time step. The coefficient m is
the dispatch factor between 1 and 0 which generally denotes the
portion of the energy injected to a certain converter. For the exam-
ple energy hub model, t1 is the portion of electricity injected to



Fig. 3. Boiler efficiency against cyclic input energy normalized by steady-state
input energy.
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Fig. 1. An example of energy hub model.
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heat pump over total electricity input. t2 indicates the percentage
of gas input to CHP over total gas input. Parameters gso and gbo

express the efficiency of the Solar PV and boiler respectively. ge

and gth represents the electric efficiency and thermal efficiency of
CHP respectively. Esh and Ehs indicate the charging and discharging
energy.

The assumptions for modelling the energy hub system are as
follows:

Assumption 1. The energy hub system modelled enables electric-
ity and heat sharing between hubs. The electrical interconnection
between hubs is the electricity exchange with the grid. For
example, in Fig. 2 electricity transfer from hub 1 to hub 2 is
achieved by injecting electricity to grid from hub 1, and extracting
the same amount of electricity from grid to hub 2. For heat transfer,
a district heat network must be installed between the hubs.
2.2. Converter modelling

The most common residential heating in the UK, a gas boiler, is
modelled within the energy hub. The efficiency of a gas boiler can
be formulated as a nonlinear expression in terms of the input
energy PgasðtÞ.

Assumption 2. The efficiency of the boiler simulated in this paper
is non-constant, and the characteristics of the cyclic fuel utilization
efficiency with respect to cyclic input energy normalized by
steady-state input energy is derived based on Ref. [22]. The data
points and approximated curve are shown in Fig. 3.

The boiler efficiency varying with the input energy can, there-
fore, be represented by the approximated curve. The expression
of boiler efficiency gbo is shown in (2):

gboðtÞ ¼ 0:8218646� 0:01686
P�
gasðtÞ
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Fig. 2. Two-hub system with energy sharing available between hubs.
where P�
gasðtÞ is the value of instant gas input at time step t normal-

ized by steady-state input.
In addition, the ground source heat pump (GSHP) is selected in

this paper due to its high efficiency and potential to decarbonise
heat, and its increasing uptake in some European countries, Amer-
ica and Japan [23]. The efficiency of the heat pump is described as
the Coefficient of Performance (CoP) and is expressed in (3):

Heat output ¼ CoP � Php ð3Þ
where PHP is the power input to the GSHP.

Assumption 3. The CoP of GSHP is set to be constant over the
whole time horizon.

Micro-combined heat and power (micro-CHP) reduces electric-
ity utilization from the grid and increases energy efficiency by
simultaneously generating power and heat [24]. Hence it is mod-
elled in this paper.

Assumption 4. The micro-CHP simulated in this paper is assumed
to be steady-state with constant electric efficiency and thermal
efficiency. The ramp rate constraint eramp to restrict the micro-CHP
power output is considered and given by (4), ep is the power output
of the micro-CHP.

�eramp 6 epðt � 1Þ � epðtÞ 6 eramp ð4Þ
2.3. Energy storage modelling

The lead-acid battery is employed as the energy storage within
the energy hubs in this work. The battery is considered to be a sim-
ple buffering device. Since the electrical energy within the storage
at the current time step is equal to the electricity at last time step
plus the charging energy or minus the discharging energy, and
minus the standby loss. The ith battery’s energy level EiðtÞ is math-
ematically expressed in (5).

EiðtÞ ¼ Eiðt � 1Þ þ Estb;iðtÞ þ Ehs;iðtÞ � gchar � Esh;iðtÞ=gdis ð5Þ
Eðt � 1Þ represents the energy within the storage in the previous
time step. Estb is the standby loss, Esh and Ehs indicate the charging
and discharging energy. gchar and gdis are charging efficiency and
discharging efficiency respectively. Since the battery can only
charge, discharge, or on standby at any time step, constraint (6) is
considered in the optimization problem.
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Ehs;iðtÞ � Esh;iðtÞ ¼ 0 ð6Þ
In addition, the characteristic of battery lifetime is considered

since the operation of the battery at different states of charge
(SOC) result in different losses. The lifetime drops quicker when
operating the battery during low SOCs compared to high SOCs
[25]. To maximize the benefits of battery utilization from the
prospective of long term operation, the battery lifetime cost pen-
alty is calculated and added to the objective function. Ref. [17] sug-
gests the method of calculating battery lifetime cost CblðtÞ and it is
illustrated in Appendix A.

Assumption 5. During the process of optimization, the initial state
of charge of each battery is set to be 70%, and to consistently utilize
the batteries for the next day, the state of charge at the final time
step needs to be reverted to above 70%. The SOC of the three
batteries is assumed to be limited between 0 and 100%.
2.4. Optimization problem description

The objective is to minimize the system cost including the
energy cost and battery lifetime cost over a time horizon of 24 h.
With the knowledge of electricity load, heat load, energy carrier
price and solar energy generation, the objective is to control the
energy hub operation at each time step to achieve a holistic 24 h
optimization. The system operation vector contains energy
injected into each hub, the dispatch factor within each hub, the
energy exchange between hubs, and the charging/discharging
energy of energy storage at each time step. The control vector
uðtÞ is expressed in (7):

uðtÞ ¼ ½Pele;iðtÞ; Pgas;iðtÞ; EijðtÞ;HijðtÞ; EshðtÞ;v iðtÞ�; 8i;8t ð7Þ
For a system containing X number of interconnected energy

hubs, the optimization problem may be formulated as equations
(8a)–(8o), the variables used in problem (8) are defined thusly:

Subscripts i and j denote the hub index.PeleðtÞ and PgasðtÞ repre-
sent the electricity and gas input to energy hub at time step t. v iðtÞ
denotes the dispatch factor at time step t. The electricity and heat
exchange between hubs are denoted as EijðtÞ and HijðtÞ, which
means the energy flow direction is from hub i to hub j at time step
t. The flow direction is reversed when the value of EijðtÞ and HijðtÞ
are negative. SOCðtÞ is the battery state of charge. EsðtÞ represents
the energy stored in the battery at time step t, which has to be lim-
ited within the battery capacity. EshðtÞ and EhsðtÞ are the charging
and discharging power from the battery. PðtÞ denotes the energy
price. PHPðtÞ and PBoðtÞ are the energy injection to heat pump and
boiler respectively. N is the number of total time steps. epðtÞ repre-
sents the electricity output of Micro-CHP, and erampðtÞ is the Micro-
CHP ramp rate at time step t.

The optimization problem is described by (8a)–(8o):

Minimize
XN
t¼1

XX
i¼1

½Pele;iðtÞ �PeleðtÞ þ Pgas;iðtÞ �PgasðtÞ þ Cbl;iðtÞ�
" #

ð8aÞ
Subject to

LiðtÞ ¼ CiðtÞ � PiðtÞ; 8i;8t ð8bÞ

0 6 v iðtÞ 6 18i;8t ð8cÞ
Electricity

Pele;i;minðtÞ 6 Pele;iðtÞ 6 Pele;i;maxðtÞ; 8i;8t ð8dÞ

Eij;minðtÞ 6 EijðtÞ 6 Eij;maxðtÞ; 8i;8t ð8eÞ
Heat
Hij;minðtÞ 6 HijðtÞ 6 Hij;maxðtÞ; 8i;8t ð8fÞ
Battery

SOCi;minðtÞ 6 SOCiðtÞ 6 SOCi;maxðtÞ; 8i;8t ð8gÞ

0 6 Esh;iðtÞ 6 Esh;i;maxðtÞ; 8i;8t ð8hÞ

0 6 Ehs;iðtÞ 6 Ehs;i;maxðtÞ; 8i;8t ð8iÞ

Esh;iðtÞ � Ehs;iðtÞ ¼ 0; 8i;8t ð8jÞ
Micro-CHP

ep;i;minðtÞ 6 ep;iðtÞ 6 ep;i;maxðtÞ; 8i;8t ð8kÞ

erampðtÞ 6 ep;iðtÞ � ep;iðt � 1Þ 6 erampðtÞ; 8i;8t ð8lÞ
Gas

Pgas;i;minðtÞ 6 Pgas;iðtÞ 6 Pgas;maxðtÞ; 8i;8t ð8mÞ
GSHP

PHP;i;minðtÞ 6 PHP;iðtÞ 6 PHP;i;maxðtÞ; 8i;8t ð8nÞ
Boiler

PBo;i;minðtÞ 6 PBo;iðtÞ 6 PBo;i;maxðtÞ; 8i;8t ð8oÞ
As indicated by (8), the optimization is carried out considering

the security constraints. (8b) indicates the coupling constraints
between hub inputs and outputs to reflect equations (5). (8b) is
the transformation of (1) which reflects the mathematical transfor-
mation between energy hub input and output. (8d) and (8m) refer
to the minimum and maximum energy input to a single hub. (8e)
and (8f) suggest the adjustment of energy transmission limitation
between hubs. (8g) indicates the limitation of energy level within
batteries. (8h) and (8i) indicate the limitation of charging energy
and discharging energy at each time step. (8j) avoids simultane-
ously charging and discharging the battery. (8k), (8n), and (8o) rep-
resent the minimum and maximum energy injection to micro-CHP,
GSHP, and boiler respectively. (8l) limits the ramp rate for micro-
CHP electric output.

Whilst solving the energy hub optimization problem, the con-
trol variables mentioned in (7) at each time step must satisfy all
constraints illustrated above. Therefore, the multi-hub problem is
necessarily a multi-period optimization containing a large number
of variables and constraints. For instance, the 3-hub scenario inves-
tigated in this paper contains 504 variables and 480 constraints.
Clearly, the optimization problem becomes more complicated as
the number of hubs increases. Additionally, it was concluded by
graphing the functions associated with the battery lifetime cost
((A1)–(A6) in the Appendix A) that these fail to satisfy the defini-
tion of a convex problem. Therefore, the optimization problem is
a non-convex problem.

3. Decomposed PSO

3.1. PSO

Particle swarm optimization was proposed based on the beha-
viour of flocking birds or schools of fish [26]. Each particle
describes a solution to a problem that can be quantitatively mea-
sured by its performance. At each iteration of the optimization,
the particles trend towards the global minimum based on two
factors, the best performance of any particle ever achieved P g

i

and the best position Pk
i of particle i. The PSO working mechanism

is illustrated by means of mathematical formulations in (9) and
(10):

The position X of a particle i at iteration kþ 1 is
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Xkþ1
i ¼ Xk

i þ Vkþ1
i ð9Þ

Vkþ1
i indicates the new velocity for particle i at kþ 1 iteration. It is

derived as:

Vkþ1
i ¼ xVk

i þ c1r1ðPk
i � Xk

i Þ þ c2r2ðP g
i � Xk

i Þ ð10Þ

r1 and r2 represent two random numbers between 0 and 1. c1 and c2
are the cognitive parameter and social parameter, the two weight-
ing factors that model the confidence of the current particle in itself
and in the swarm [27]. Parameter x is the inertia weight, a coeffi-
cient applied to particle velocity, which influences the PSO conver-
gence behaviour by increasing the distance the particle will travel
from its previous position.

At the beginning of the optimization, the PSO algorithm firstly
generates a population of particles randomly over the search space,
where the position of each particle represents a solution. The par-
ticles are evaluated by applying the solution to the problem to

obtain a fitness score for each particle. P g
i and Pk

i can therefore be
found. All particles are updated using (9) and (10) at each iteration,
with this process repeated until the stopping criteria is met.

When conventional PSO is used on highly constrained and non-
convex optimization problems, the particles tend to fall into infea-
sible regions during initialization and updating. This problem can
be solved by utilizing the sequential quadratic programming
(SQP) algorithm [28]. The SQP algorithm solves an optimization
problem by seeking the Karush-Kuhn-Tucker first order optimally
condition, which can find a local minimum near the starting point.
In other words, the position of an infeasible particle is taken as the
starting point and then by utilizing the SQP algorithm, a feasible
particle can be found nearby that replaces the infeasible one.
3.2. Decomposition technique

The multi-energy hub optimization is a multi-period problem
with many variables. Since the main purposes of storage are to
time-shift renewably generated energy to meet loads and arbitrage
against varying tariffs, its operational management must, there-
fore, consider the energy price, renewable generation, and con-
verter working status to schedule its operational state in each
time step, i.e. charging, discharging or on standby. The operation
of storage in the current time step will influence the operation in
other time steps and thus a multi-period optimization approach
is necessary. The complexity of the problem requires significant
computation time and may compromise optimization accuracy.
However, if the optimal operation of the complex time-
dependent device (such as storage) is known in advance, other
control variables in (7) can then be obtained by applying numerical
methods in each time step.

The stochastic nature of PSO is capable of solving non-convex
problems with non-continuous search spaces, whilst the numerical
function ‘interior-point’ can handle non-linear constrained prob-
lems with acceptable performance and computation time, so the
decomposition technique here harnesses advantages of both meth-
ods. In general, during the generating and updating of all particles,
only the control information of every battery is included in each
particle (i.e. charging and discharging energy). For the optimization
of a three-hub system containing three batteries over 24 time
steps, there are totally 144 variables included in each particle.
Whilst the operations of remaining elements in the energy hub
system are derived using the interior point method based on the
information in each particle, and the fitness score of each particle
can therefore be calculated. The procedure is shown in Fig. 4 and
can be described thusly:
(1) Randomly initialize a population of particles, where the
position of each particle denotes the solution of two vari-
ables over 24 h: charging energy and discharging energy.
The variables should be generated within the boundary set
by the optimization, including the maximum charging/dis-
charging energy, minimum and maximum battery capacity
or SOC as indicated in (8h), (8i) and (8g). The magnitude of
charging power at each step multiplied by discharging
power should be equal to zero, meaning the battery can only
either be charging, discharging, or on standby. This is
achieved by applying SQP algorithm to find a feasible point
satisfying above conditions near the initial point.

(2) For each time step, the charging and discharging energy can
be regarded as the extra output and input for energy hub
system without a battery. Therefore, the operations of the
battery between each time step can be decoupled from each
other.

(3) The ‘interior-point’ method is then applied to optimize the
operation over the whole time period based on electricity
load, heat load, renewable energy generation, extra input,
and extra output. The optimized total system cost over 24
time steps is then derived. Meanwhile, the battery lifetime
cost related to the battery working status over 24 time steps
is calculated. The fitness score of each particle is thus the
total operational cost from both battery operation and opti-
mized overall hub management.

(4) Find P g
i andPk

i , see if the best particle satisfies the stopping
criteria. If the stopping criteria is met, then the solution of
the best particle is the final solution to the optimization. If
not, update the velocities and positions for particles based
on (9) and (10).

(5) Repeat steps 2 to 4 until the stopping criteria is met.

The decomposition technique decouples the optimization for
batteries and other hub elements. The optimal operations of bat-
teries are derived based on the PSO, the optimization for other
hub elements is obtained by applying the interior-point method.
The efficiency of the algorithm is increased, and the computation
time is therefore reduced.

The decomposed-PSO algorithm is achieved based on modifica-
tion of the open source PSO MATLAB routine developed by ETH
Zurich [28]. The decomposed method is illustrated in terms of
the optimization for the two-hub system in next section.
4. Demonstration

This section applies the novel PSO algorithm to two multi
energy-hub systems across two use scenarios. The first part intro-
duces a two-hub system, which is simple enough such that a the-
oretical minimummay be analytically calculated for benchmarking
the performance of the PSO algorithm. The second part investigates
a three-hub system with converters and batteries illustrated in
Section 2. The potential application of the decomposition tech-
nique is discussed based on the computation speed and operation
results in the third part.

4.1. Two-hub system

To demonstrate the effectiveness of the decomposed-
optimization in finding the global minimum, a 2-hub system opti-
mization problem is proposed and investigated. The battery life-
time cost is excluded in the problem, hence the theoretical
minimum can be derived analytically, and the performance of
the decomposition technique can be evaluated. The 2-hub system
with energy sharing is shown in Fig. 2.



Fig. 4. The working flow of the decomposition technique.

Fig. 5. The time-of-use tariffs against 24 h.
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Each of the two hubs represents a residential house. The load
and generation profile is assumed to be a winter day in the UK
based on [29] and [30]. A battery is equipped in hub 1, with charg-
ing efficiency and discharging efficiency assumed to be 95%, and
standby losses assumed to be negligible (justified because the
self-discharge rate on diurnal timescales is very small). The battery
minimum and maximum capacities are 4 kW h and 17.376 kW h.
To verify that the redundant energy within each hub is adequately
utilized by the energy sharing between hubs, the different perfor-
mance of converters is assumed in each hub. A ground source heat
pump with CoP of 3.0 and another heat pump with CoP of 4.2 are
included in hub 1 and hub 2 respectively. Time-of-use electricity
tariffs (derived from [31]) are assumed, in this case shown in
Fig. 5. The optimization problem statements refer to (8).

4.1.1. Validation
The benchmark approach to calculate the global minimum of

the two-hub system over 24 h is shown in this section. The total
energy cost, TC, for the two hubs is given in (11).

TC ¼
X24
t¼1

½Pele;1ðtÞ þ Pele;2ðtÞ þ EshðtÞ� �Pele ð11Þ

Pele;1ðtÞ and Pele;2ðtÞ indicate the electricity consumption for hub 1
and hub 2 respectively. EshðtÞ represents the electricity exchange
between hubs and energy storage. The optimization strategy is as
follows: the consumed electricity is utilized to support the ground
source heat pump to generate heat, and meet the electricity load.
According to Eq. (3), the electricity requirement for heat can be
reduced by exploiting the high CoP of heat pumps. Since heat



Table 1
The optimal operations for battery.

Period Charging energy
(kW h)

Discharging energy
(kW h)

Battery state of charge
(kW h)

1–7 14.08 0 17.376
8–14 0 6 11.376
15–16 6 0 17.076
17 0 2.646 14.429
18–19 0 5.78 8.649
20–21 0 4.6494 4
22–24 0 0 4

Table 2
Optimization results for 2-hub system.

Particle population Optimization results (£) Computation time (s)

10 6.783 106
20 6.776 250
30 6.737 271
40 6.733 260
50 6.752 419
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between hubs is transferable, the heat pump in hub 2 (CoP of 4.2) is
applied to support the heat load for two hubs at each time step.

In addition to selecting high performance heating converters,
storage can also be utilized to reduce energy cost. Based on achiev-
ing the objective of reducing the energy cost for the whole system,
the operation of the battery should follow the broad strategy of
charging during low tariffs and discharging during high tariffs.
The battery needs to be fully charged during periods 1–7 since
the electricity prices at these times are lowest. For periods 17–
19, the prices are the highest, hence the storage needs to discharge
within the maximum discharging power. The price from 15–16 is
the lowest, hence some energy could be charged during 8–14
and recharge during 15–16 only if the remaining power at the
end of 16 is capable of meeting the demand during 17–19. After
considering the maximum discharging/charging power (3 kW),
the battery operation at each time step can be derived and indi-
cated in Table 1. Based on the operation of storage and heat pump,
the total energy cost, TC, can be calculated as £6.73 from (11).
Fig. 6. The battery operations against 24 h.
4.1.2. First scenario
The 2-hub system optimization problem is solved by the

decomposed PSO method running on a 3.40 GHz Intel i5 quad core
desktop with 8 GB of RAM. The procedures of implementing
decomposed PSO is illustrated as follows:

(1) A group of particles is generated, each particle contains each
battery’s charging and discharging energy over 24 time
steps, which is randomly generated within the boundary
set by optimization. Hence there are totally 48 variables con-
tained in one particle. The charging and discharging energy
in first three steps in the first particle is shown for example:
2.65 and 0.21, 1.24 and 0.11, 2.15, 0.02.

(2) The SQP method is then applied to find a feasible point near
the randomly generated point based on the battery con-
straints, in this case a feasible point indicates that the bat-
tery has to be either charging, discharging, or standby. The
6 variables in procedure 1 turns to be: 2.71 and 0, 1.21
and 0, 2.10 and 0.

(3) The battery scheduling is then abstracted from the individ-
ual time step optimization, in that the charging and dis-
charging power of the battery at each time step are
regarded as extra energy exported/imported from/to the
hub. Given the battery information and the constraints
within the energy hub system, the ‘interior-point’ method
is applied to optimally decide the variables over 24 time
steps, such as the value of energy carrier injection to the
hub, dispatch factor, etc. The total energy cost over whole
time horizon can therefore be calculated, and regarded as
the fitness score of the related particle.

(4) The speed of each particle is generated based on Eq. (10), the
PSO keeps updating particles’ positions and speeds until the
stopping criteria is met.
The optimization results of total energy cost over 24 h are
shown in Table 2 over a range of different particle population sizes.

As shown from Table 2, the performance of the algorithm
improves when the particle population increases. However, the
optimization results do not consistently increase with increasing
particle population due to the stochastic nature of PSO. The best
result is £6.73, which demonstrates that the algorithm is capable
of reaching very close to the global minimum for a highly-
constrained, non-linear problem.

For comparison, when the storage is not present and energy
sharing is unavailable between hubs, the energy demand for each
hub can only be met with its own converters, and the total mini-
mum energy cost is calculated as £7.84. When storage is not
equipped with the system and energy sharing is available between
hubs, the optimization problem is transformed to an optimal flow
problem at each time step. The optimization can be solved by
applying the ‘interior-point’ method, and the theoretical minimum
energy cost is derived as £7.32. Compared with the 2-hub system
without energy sharing and storage, the optimization achieves an
energy saving of 14.14%.

To demonstrate the accuracy of decomposed-PSO, the optimal
operation of the battery at each time step derived from a 30 parti-
cle optimization is compared with the battery operation derived
from the benchmark approach, and is shown in Fig. 6. It can be
observed that the optimized battery operations derived from the
decomposition technique closely approximate to the operations
obtained from the benchmark theoretical minimum.

4.2. Three-hub system

A three-hub system is presented and shown in Fig. 7. The three
hubs respectively contain a battery with sizes of 5.3 kW h,
10.5 kW h and 21 kW h, the related battery parameters can be



Fig. 7. Three-hub system with energy sharing available between hubs.
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found in [25]. Different heating converters including GSHP, micro-
CHP, and gas boiler are equipped in the three hubs. The CoP of
GSHP is selected as 4, the constraint parameters of micro-CHP
are adopted from [24,32]. The efficiency of the gas boiler is non-
linear against the gas input, and is illustrated in Section 2. The elec-
tricity load LeleðtÞ and heat load LthðtÞ for each hub are satisfied by
optimally scheduling the utilization of all heating converters and
batteries.

The gas price is assumed to be constant at £0.03 per kW h over
all 24 time steps. The electricity price is varied every hour in this
case to reflect the time-of-use electricity tariffs all retailers will
likely adopt in the near future. The variant electricity price against
24 h is derived from [31] and shown in Fig. 8, with average half
Fig. 8. The variant tariffs of electricity against 24 h.
hourly tariffs used to produce an hourly pricing granularity. (These
energy costs are typical in the UK at time of writing, but future
prices will clearly yield different overall costs than the results
shown in this paper.) The same method of modelling electricity
demand and heat demand used in [31] is employed here. Addition-
ally, the solar PV generations PSOðtÞ are simulated with the soft-
ware [33]. To demonstrate the superiority of the decomposition
technique, the conventional PSO is applied to solve this optimiza-
tion problem. The comparison between the decomposition tech-
nique and conventional PSO is illustrated by convergence
behaviour and computation time.
4.2.1. Second scenario
In this scenario, the performance between the conventional PSO

and the decomposition technique in solving the optimization prob-
lem above is compared.

Since the time spent on conventional PSO increases massively
with rising particle population size, a modest population of 10 par-
ticles was applied to both conventional PSO and decomposition
technique to observe the convergence behaviour, and the compar-
ison is shown in Fig. 9. The blue circles and the orange crosses rep-
resent the performance of applying conventional PSO and the
decomposition technique respectively.

As indicated in Fig. 9, the objective function value by applying
decomposed PSO plateaus from between 15 and 20 iterations
onwards, for conventional PSO, the objective function value trends
to flat around 35 iterations. Under the conservative stall genera-
tions (50) and stall tolerance settings (£0.000001), the conven-
tional PSO optimization converges at the 162nd iteration after
8970 s, and the optimization result is £22.61. The decomposition
technique converges at 143rd iteration after 121 s, and achieves
a much improved optimization result of £9.30.



Fig. 9. Convergence behaviours of conventional PSO and decomposition technique.

Fig. 10. The optimized battery operations by applying conventional PSO and
decomposition technique.

Fig. 11. Battery state of charge over 24 time steps derived from the optimization
with the battery lifetime cost considered.

Fig. 12. Battery state of charge over 24 time steps derived from the optimization
without considering the battery lifetime cost.
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The optimized battery operations for hub 2, derived from two
optimization methods, are shown in Fig. 10 in terms of battery
SOC. The pink circles and orange crosses represent the battery
SOC at each time step optimized by conventional PSO and decom-
posed PSO, and the blue dotted line indicates the electricity price
variation over 24 time steps. From the perspective of optimally
exploiting the storage to save energy cost, both of the two methods
achieve the optimization by charging storage during the low tariff
period and recharging during the high tariff period. It could be con-
cluded from Fig. 10 that the electricity tariff experiences two peak
values over 24 time steps. The two peak values appear at step 11
and step 18. Both of the optimization methods indicate that the
storage is discharging since the first peak electricity price from step
9 to 10. Nevertheless, the storage operation derived from the
decomposition technique discharges around the first peak electric-
ity price from step 10 to 11, and then rapidly charges from step 11
to 18 to prepare for the second peak electricity price. With conven-
tional PSO, the storage barely discharges at the first peak electricity
price. Thus comparing with the conventional PSO, the decomposi-
tion technique can better optimize the storage operation and fur-
ther reach the optimum. However, it could be derived from
Fig. 10 that the battery scheduling operations derived from both
optimization methods fail to fully discharge around the peak tariff
period, which may lead to further cost saving. This is due to the
low number of particles that degrades the performance of the
optimization.
4.2.2. Impact of battery lifetime cost
To investigate the influence of battery lifetime cost in the objec-

tive function on battery scheduling, the optimization is run when
considering battery lifetime and compared to when the battery
lifetime consideration is omitted. 30–50 particles used in decom-
posed PSO reach a result very close to the global minimum for
the 3-hub optimization based on extensive experimentation.
Hence 50 particles are applied in the optimization. The SOC of
three batteries over 24 time steps when considering battery life-
time and compared with excluding the battery lifetime in the
objective function are shown in Figs. 11 and 12 respectively. The
green, blue, and red lines represent the variation of SOC of battery
in hub 1, 2, and 3 over 24 h respectively.

The total energy costs for these two optimizations are £9.0268
and £9.0070, the battery lifetime costs are £0.0331 and £0.0728.
Clearly when omitting the battery lifetime cost the batteries are
exploited to yield more energy saving. However, the battery



Fig. 14. Computation time against different amount of particles.
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lifetime cost is higher, and thus the system total cost is higher
(sum of energy cost and battery lifetime cost) at £9.0798, com-
pared to £9.0599 when battery lifetime is considered. When the
battery lifetime is not optimized, the variation of SOC is broader,
for example, the battery in hub 1 even varies between 50% and
100%. When the battery lifetime is considered in the objective
function, the SOC of three batteries all varies from approximately
60–90%. It may be concluded from the calculation of battery life-
time cost that the cost increases when the battery is operated dur-
ing lower SOCs. Hence the battery is better operated at high SOCs
to avoid unnecessary degradation of battery lifetime.

4.3. Applications

The optimization problem uses a fixed time step of one hour. To
allow an online, receding time horizon implementation, the opti-
mization for scheduling the system of energy hubs must be com-
pleted within the time step. Therefore, the size of the system of
energy hubs that the decomposition technique is capable of opti-
mizing within one hour is investigated. With the same modelling
method applied, a 5-hub system and an 11-hub system are simu-
lated with the same level of complexity to the 3-hub system inves-
tigated in Section 5. The decomposition technique is applied with
30 particles to 3, 5, and 11 hub systems. The computation time
for solving these three cases are 270 s, 779 s, and 1011 s
respectively.

The decomposition technique was tested with different num-
bers of particles, for the 11-hub system, and the optimization
results and computation time are shown in Figs. 13and 14 respec-
tively. In Fig. 14 ‘y = 3600 s’ was drawn as a reference which indi-
cates the time budget for a receding time horizon implementation
with a time step of 1 h.

It could be observed from Fig. 13 that the optimization results
generally plateau at approximately £46.89 when the population
of particles applied in PSO is 40. Increasing population size beyond
this does not increase system benefit. In contrast, the computation
time increases approximately linearly as the number of particles
increases. The computation time of implementing PSO with 60 par-
ticles on this problem is 3421 s representing the best trade-off
between computation time and performance for this particular
system.

With a receding time horizon implementation, operations are
calculated up to a certain time horizon, for which all load data is
predicted in advance, but only the optimized operation for the next
Fig. 13. Optimization results against different amount of particles.
time step is implemented. In the next time step the time horizon is
increased by one and the process is repeated. This makes the best
use of load prediction data on the basis that the predicated data
closer to the current time step is likely to be more accurate. On
the other hand, a fixed time horizon approach may be used for lar-
ger multi-hub systems that are more computationally intensive to
solve.
5. Conclusion

This paper presents a decomposed method that hybridises par-
ticle swarm optimization and the ‘interior point’ method to solve
the optimal scheduling problem for a multi-energy hub system
with the consideration of battery lifetime. For a 3 residential
energy hub system, the utilization of battery varies from 60% to
90% to avoid unnecessary degradation of the battery lifetime, and
the system thus benefits long term through increased battery life-
times. Compared with the conventional PSO, the decomposed
method can achieve a 58% greater energy saving for three-hub
optimization with 98% saving of computation time. The optimiza-
tion demonstrably achieves very near the global minimum. This
method can be applied in a receding time horizon approach for
solving a practical system of size around 10 hubs, always leverag-
ing the most up to date load prediction. For a larger system with
more storage technologies, a fixed time horizon approach can be
used, or the time step may be increased or the time horizon
reduced. From the view of energy management, the storage oper-
ation is more accurate when the predicted horizon is longer and
generally speaking, the time step smaller, necessitating a trade-
off between optimization performance and computation time.
Alternatively, the computation time could be shortened using high
performance hardware or cloud computing.
Appendix A. Calculation of battery lifetime cost

The life loss of a battery LlossðtÞ over a certain time period t can
be expressed as:

LlossðtÞ ¼ AcðtÞ
Atotal

ðA1Þ

where AcðtÞ is the effective cumulative Ah throughput during the
use of battery and Atotal is the total cumulative Ah throughput in
the life cycle. The value of Atotal is selected as 390Q effective Ah over
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its lifetime [25], which Q Ah is the capacity of a battery. AcðtÞ is for-
mulated in (A2).

AcðtÞ ¼ ksoc � A0
cðtÞ ðA2Þ

ksoc is the effective weighting factor. The relation between ksoc and
battery state of charge (SOC) is estimated as a linear formulation
based on [25] and expressed in (A3).

ksoc ¼
�1:5 � SOC þ 2:05 if SOC P 50%
1:3 if SOC < 50%

�
ðA3Þ

A0
cðtÞ indicates the actual Ah throughput. Assuming the SOC of the

battery varies from a to b in a certain time period, A0
cðtÞ and AcðtÞ

can be expressed in terms of a and b shown in (A4) and (A5)
respectively.

A0
cðtÞ ¼ ða� bÞ � Q ðA4Þ

AcðtÞ ¼
R a
b ksocdsoc � A0

cðtÞ if a P b

0 if a < b

(
ðA5Þ

The life loss cost CblðtÞ is calculated with (A6).

CblðtÞ ¼ LlossðtÞ � Cinit�bat ðA6Þ
Cinit�bat represents the initial investment cost of battery, and it is
assumed to be 0.534 £/Ah [34] multiply by the battery capacity.
The life loss cost can thus be calculated with (A1)–(A6).
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