
Kernel collaborative face recognition

Dong Wang a, Huchuan Lu a,n, Ming-Hsuan Yang b

a School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
b Department of Electrical Engineering and Computer Science, University of California, Merced, CA, USA

a r t i c l e i n f o

Article history:
Received 8 September 2014
Received in revised form
21 November 2014
Accepted 14 January 2015
Available online 22 January 2015

Keywords:
Face recognition
Kernel methods
Sparse representation
Collaborative representation

a b s t r a c t

Recent research has demonstrated the effectiveness of linear representation (i.e., sparse representation,
group sparse representation and collaborative representation) for face recognition and other vision
problems. However, this linear representation assumption does not consider the non-linear relation-
ship of samples and limits the usage of different features with non-linear metrics. In this paper, we
present some insights of linear and non-linear representation-based classifiers. First, we present a
general formulation known as kernel collaborative representation to encompass several effective
representation-based classifiers within a unified framework. Based on this framework, different
algorithms can be developed by choosing proper kernel functions, regularization terms, and additional
constraints. Second, within the proposed framework we develop a simple yet effective algorithm with
squared ℓ2-regularization and apply it to face recognition with local binary patterns as well as the
Hamming kernel. We conduct numerous experiments on the extended Yale B, AR, Multi-PIE, PloyU NIR,
PloyU HS, EURECOM Kinect and FERET face databases. Experimental results demonstrate that our
algorithm achieves favorable performance in terms of accuracy and speed, especially for the face
recognition problems with small training datasets and heavy occlusion. In addition, we attempt to
combine different kernel functions by using different weights in an additive manner. The experimental
results show that the proposed combination scheme provides some additional improvement in terms of
accuracy.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As an interesting and important topic in computer vision, face
recognition has many useful applications, such as surveillance,
human–computer interface, access control, argument reality, among
others. Although numerous algorithms have been proposed for face
recognition (e.g., principal component analysis (PCA) [30], linear
discriminant analysis (LDA) [7], elastic bunch graph matching
(EBGM) [34], local binary patterns (LBP) [1], histogram of Gabor
phase patterns (HGPP) [43], rank-one projections (ROP) [37], nearest
subspace (NS) [18], locality preserving projection (LPP) [12] and
Discriminant Image Filter Learning (DIFL) [19]), it remains as a
challenging problem due to intrinsic (e.g., aging and expression
variations) and extrinsic appearance change (e.g., occlusion, pose,
and illumination variations).

The recent years have witnessed an increasing interest of sparse
representation for vision problems, e.g., face recognition [36], super-
resolution [38], image inpainting [35], facial expression recognition
[47] and visual tracking [23,31]. In [36], Wright et al. propose a
method based on sparse representation for face recognition which

makes use of the ℓ1-minimization techniques. In this method, a
query face image is linearly represented (or coded) by all training
images with a sparsity constraint imposed on the coding vector, and
then classification is performed by identifying the class with minimal
reconstruction error. Several approaches based on sparse representa-
tion have since been proposed for face recognition. Yang et al. [39]
adopt Gabor features rather than raw pixels with sparse representa-
tion and learn an occlusion dictionary to handle occluded face
images. Zhou et al. [48] exploit the spatial continuity of occluded
pixels with a Markov random filed model to handle occlusion
problems. Jia et al. [15] and Zhuang et al. [49] focus on designing
practical face recognition systems by pursuing structured sparsity or
handling image corruption and misalignment. In [46], Zhang et al.
attempt to improve the accuracy of the face recognition method by
combining low-rank and sparsity constraints to mine discriminative
components of facial images. By considering the prototype and
variation separately, Deng et al. [5] present a superposed SRC (SSRC)
method to deal with face recognition under uncontrolled conditions.
However, recent findings [29,45] reveal that sparsity constraint plays
a less important role in effective face recognition. In [29], Shi et al.
show that a simple ℓ2-based approach performs as well as the
algorithm with ℓ1 constraints [36]. Furthermore, Zhang et al. [45]
demonstrate that the role of collaboration between classes in
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representing a query image is more important than that of the
sparsity constraints. In [45], a collaborative representation is pre-
sented with a squared ℓ2-regularization which achievescompetitive
performance in terms of accuracy but with significantly lower
complexity than the sparse representation method.

Despite the demonstrated success, there exists a critical issue in
both approaches based on sparse representation and collaborative
representation that needs to be addressed. Both approaches have
the same fundamental assumption that a test sample can be well
coded by a set of training samples with a linear representation
scheme. However, face recognition is more likely a non-linear
problem due to the complexity of facial images and the “small
sample size” problem. Therefore the linear assumption may limit
face recognition performance as it neither exploits the non-linear
relationship of samples nor adopts features (such as local binary
patterns [24]) that require non-linear metrics. For example, with-
out effective features and metrics, the sparse representation
method [36] requires numerous face samples usage from each
individual to construct an overcomplete dictionary such that the
approach with sparse linear representation is able to performwell.
However, in realistic applications, it may be difficult to maintain a
large training set due to both labor cost and computational
complexity. Therefore, it is critical to develop algorithms with
effective features and non-linear metrics to describe the non-
linear relationships among face samples especially when the
training sample size is small.

Motivated by the fact that kernel methods [28] are able to capture
the non-linear similarity of samples effectively, we present a unified
framework and propose a kernel collaborative representation scheme
for linear and non-linear representation-based approaches. The con-
tributions of this work are threefold. First, we present a general
framework based on kernel collaborative representation, which not
only unifies state-of-the-art representation-based classifiers but also
facilitates developing new algorithms. Second, within this framework
we propose a simple yet effective method by using a squared ℓ2
regularization. Third, we apply the proposed algorithm to face reco-
gnition with local binary patterns and the Hamming kernel. We
conduct numerous experiments on the extended Yale B, AR, large-
scale Multi-PIE, PloyU NIR, PloyU HS, EURECOM Kinect FERET face
databases to demonstrate the merits of the proposed algorithm.

2. Linear representation

In this section, we summarize and discuss the linear repre-
sentation-based classifiers (i.e., sparse representation (SR) [36],
group sparse representation (GSR) [21], and collaborative repre-
sentation (CR) [45]), and put our work in proper context.

Let Ai ¼ ai;1; ai;2;…; ai;ni
� �

ARm�ni denote the dataset of the ith
class, where each column is a sample of class i, and A¼ ½A1;

A2;…;Ak� represent the whole training set, where k is the number
of classes. Given a test sample yARm�1, we describe it by a linear
representation y� Ax, where x¼ ½x1; x2;…; xk�> (xi ¼ ½xi;1; xi;2;
…; xi;ni

�> stands for the coding coefficients associated with the
ith class). We denote the ℓ1- and ℓ2-norm of x as ‖x‖1 and ‖x‖2,
respectively. The group norm (ℓ2;1-norm) of x is computed
by ‖x‖2;1 ¼

Pk
i ¼ 1 ‖xi‖2, where each class is treated as an

individual group.
The main steps of the linear representation framework are listed

in Algorithm 1. First, we normalize each column of A to have a unit
ℓ2-norm to avoid a degenerate solution (e.g., coding coefficients are
too large or too small). In step 2, the first term 1

2 ‖y�Ax‖22 is related
to the reconstruction error, and the underlying assumption is that a
test sample y is linearly represented by all training dataset colla-
boratively rather than by training samples from an individual class.
The second term of the optimization problem in step 2 is a

regularization term. Different regularization terms lead to different
properties of the coding coefficients (i.e., ℓ1-regularization (2(a))
encourages sparsity [36], ℓ2;1-regularization (2(b)) promotes group
sparsity, and ℓ2-regularization (2(c)) does not lead to sparsity but
makes the solution simple and stable [45]). After obtaining the
coding vector x, we determine which class a test sample y belongs
to. In [36] and [21], the reconstruction error (or residual) of each
class (3(a)) is used for classification, while in [45], the regularized
residual of each class (3(b)) is demonstrated to perform better than
the residual for classification. Finally, we classify y by assigning it to
the object class that minimizes the residual or regularized residual
(Step 4 of Algorithm 1).

Algorithm 1. Linear representation framework.

1. Normalize each column of A to have a unit ℓ2-norm.
2. Code a test sample y by a linear representation (2(a), 2(b) or

2(c)),
2(a) min

x
1
2 ‖y�Ax‖22þλ‖x‖1 (SR [36])

2(b) min
x

1
2 ‖y�Ax‖22þλ‖x‖2;1 (GSR [21])

2(c) min
x

1
2‖y�Ax‖22þλ‖x‖22 (CR [45])

to obtain the corresponding coding coefficients.
3. Compute the residuals (3(a)) or regularized residuals (3(b))

of each i-class by
3(a) ri ¼ ‖y�Aixi‖2 (SR [36] and GSR [21])
3(b) ri ¼ ‖y�Aixi‖2=‖xi‖2 (CR [45])

4. Output the identity of y as
IdentityðyÞ ¼ arg minifrig

For effective face recognition algorithms based on linear
models, the following issues need to be discussed and addressed:
sparse or collaborative representation, and linear model.

2.1. Sparse or collaborative representation

Motivated by the demonstrated success of the sparse representa-
tion approach for the face recognition algorithm [36], numerous
methods [21,48,39,9] have been proposed which emphasize the
importance of sparsity constraints for classification rather than
representation schemes and classifiers. However, Shi et al. [29]
demonstrate that a simple ℓ2-based approach is able to achieve
comparable performance with the ℓ1-based algorithm. Furthermore,
Zhang et al. [45] show that the role of collaborative representation
(collaboration between classes in representing the query sample) is
more important than that of the sparsity constraints. Since face
recognition tasks often suffer from the typical “small sample size” or
“lack of samples” problems, it is less effective to represent a test
sample simply by training samples from an individual class with the
sparse representation scheme. In [36], each test face image is
represented by images from all possible classes rather than an
individual class, and thus the above-mentioned problem is alle-
viated. Based on this observation, Zhang et al. [45] propose a
collaborative representation method by using a squared ℓ2-regular-
ization term. Compared to the method based on sparse representa-
tion [36], this collaborative representation algorithm provides a
simple yet more efficient classification scheme [45]. It is worth
emphasizing that we present a kernel collaborative representation
scheme that considers both linear and non-linear approaches in a
unified framework.

2.2. Linear relationship

Both face recognition algorithms based on sparse representa-
tion [36] and collaborative representation [45] assume that a test
sample can be well linearly represented by all training samples.
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However, this assumption may not hold in real world applications
due to the complexity of samples and the “small sample size”
problem. In addition, the linear representation assumption limits
the usage of certain features and non-linear metrics. Motivated by
the fact that kernel methods can capture the non-linear similarity
of samples and can exploit different kinds of features, kernel
sparse representations [16,9] have been proposed for face recogni-
tion and object classification. Although these kernel methods
perform favorably against linear sparse representation algorithms,
they are nevertheless time-consuming due to the use of compli-
cated ℓ1-optimization techniques. In addition, Yang et al. [42,33]
present a kernel collaborative representation (KCR) model, which
extends the CR [45] model in a non-linear way. However, there is a
lack of a general framework to unify linear and non-linear repre-
sentations. In this work, we present a unified framework and
design a simple yet effective algorithm for face recognition. This
unified framework not only provides a principled way to under-
stand why a specific method works well or not, but also facilitates
developing new algorithms.

3. Kernel collaborative representation (KCR)

3.1. KCR framework

We present a unified framework based on the kernel colla-
borative representation (KCR) that accommodates linear and non-
linear schemes in this section. Similar to face recognition methods
based on linear representation, the KCR framework consists of two
main steps: representation and classification (i.e., a test sample is
first represented with the coding coefficients by minimizing a
specific objective function and then classified based on these
coefficients).

Suppose that there exists a function ϕ, which maps the sample
y and the basis A to a high dimensional feature space: y-ϕðyÞ and
½a1;1; a1;2;…; ak;nk

�-½ϕða1;1Þ;ϕða1;2Þ;…;ϕðak;nk Þ�. By assuming that
the mapped test sample ϕðyÞ can be linearly represented by the
mapped basis ϕðAÞ in the high dimensional feature space, we
define the objective function of kernel collaborative representa-
tion (KCR) as

min
x

1
2 ‖ϕðyÞ�ϕðAÞx‖22þΩðxÞ

s:t: ψ1ðxÞ ¼ 0
ψ2ðxÞZ0; ð1Þ

whereΩðxÞ is a regularization term, and ψ1ðxÞ and ψ2ðxÞ stand for
some constraints. By introducing a kernel function
κðxi;xjÞ ¼ 〈ϕðxiÞ;ϕðxjÞ〉, the objective function can be modified as

min
x

1
2 ‖ϕðyÞ�ϕðAÞx‖22þΩðxÞ
¼min

x
1
2 κðy; yÞþ1

2 x
>KAAx�x>KAðyÞþΩðxÞ

¼min
x

1
2 x

>KAAx�x>KAðyÞþΩðxÞ; ð2Þ

where KAA is a n� n matrix with ½KAA�ij ¼ κðai; ajÞ, KAðyÞ is an n� 1
vector with ½KAðyÞ�i ¼ κðai; yÞ, n stands for the number of all
training samples, and ai denotes the ith column of A.

After we obtain the coding coefficients by solving the objective
function (Eq. (2)), we classify a test sample y by assigning it to the
object class that minimizes the residuals,

in ¼ min
i ¼ 1;2;…;k

‖ϕðyÞ�ϕðAiÞxi‖22

¼ min
i ¼ 1;2;…;k

�2x>
i KAi

ðyÞþx>
i KAiAi

xi; ð3Þ

or the regularized residuals,

in ¼ min
i ¼ 1;2;…;k

‖ϕðyÞ�ϕðAiÞxi‖22=‖xi‖22

¼ min
i ¼ 1;2;…;k

κðy; yÞ�2x>
i KAi

ðyÞþx>
i KAiAi

xi

‖xi‖22
; ð4Þ

where Ai ¼ ½ai;1; ai;2;…; ai;ni
� denotes the dataset of the ith class and

xi is its corresponding representation coefficients. The notions KAA

and KAðyÞ can be easily represented by

KAA ¼

KA1A1
KA1A2

⋯ KA1Ak

KA2A1 KA2A2 ⋯ ⋯
⋯ ⋯ ⋯ ⋯

KAKA1 ⋯ ⋯ KAkAk

2
66664

3
77775

KAðyÞ ¼ ½KA1
ðyÞ;KA2

ðyÞ;…;KAk
ðyÞ�> : ð5Þ

We note that the regularized residual term (4) is better than the
residual term (3) for the classification task. For the non-linear
representation model, the mapped test sample ϕðyÞ can be linearly
represented by the mapped basis as ϕðyÞ ¼ϕðA1Þx1þϕðA2Þx2þ
⋯þϕðAkÞxk. The residual for ith class (i.e., ‖ϕðyÞ�ϕðAiÞxi‖22) merely
considers the reconstruction error with respect to the mapped sub-
basis ϕðAiÞ but completely ignores the information of the representa-
tion coefficient vector. Intuitively, if the mapped test sample ϕðyÞ
belongs to the ith class, it means the sample ϕðyÞ can be represented
by the ith sub-basis ϕðAiÞ rather than other basis vectors. For one
thing, the reconstruction error ‖ϕðyÞ�ϕðAiÞxi‖22 should be as small as
possible. For another, the squared norm ‖xi‖22 should be as large as
possible to capturemore energy. Thus, the regularized residual scheme
is more effective by considering both the reconstruction error with
respect to the mapped sub-basis and the energy of the coefficient on
the mapped sub-basis.

3.2. Generalization of KCR framework

We note that the proposed kernel collaborative representation
(KCR) facilitates to exploit non-linear relationship of samples by
using effective features and non-linear metrics via kernel func-
tions. By choosing different types of kernel functions, regulariza-
tion terms and additional constraints, many effective algorithms
including the nearest neighbor (NN), nearest subspace (NS) [18],
sparse representation (SR) [36], collaborative representation (CR)
[45], group sparse representation (GSR) [21], and kernel sparse

Table 1
Kernel collaborative representation for effective face recognition.

Algorithm Kernel function Regularization Constraint or assumption

SR [36] Linear ℓ1-Norm ðλ‖x‖1Þ –

CR [45] Linear Squared ℓ2-norm ðλ‖x‖22Þ –

GSR [21] Linear ℓ2;1-Norm ðλ‖x‖2;1Þ –

KSR [16,9] Gaussian [9] Hamming, Chi-square [16] ℓ1-Norm ðλ‖x‖1Þ –

KCR [42,33] Gaussian, polynomial Squared ℓ2-norm ðλ‖x‖22Þ –

NN Linear – ‖x‖0 ¼ 1; ‖x‖22 ¼ 1
NS [18] Linear Squared ℓ2-norm ðλ‖x‖22) Samples from different classes are orthogonal.
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representation (KSR) [16,9]), can be viewed as special cases of the
unified KCR framework as summarized in Table 1. We show that
these methods operate as representation-based classifiers. In
addition, we explain the underlying reasons why they do not
perform well in face recognition as a result of enforced strong
constraints that affect their generalization abilities.

Within the proposed framework, numerous methods can be
developed using different regularizations and constraints to exploit
desired properties. A simple idea is that we can choose different types
of ΩðxÞ to design different algorithms for exploiting different proper-
ties of the representation coefficients. For instance, the ℓ1-regulariza-
tion ðλ‖x‖1Þ encourages sparsity and the ℓ2;1-regularization ðλ‖x‖2;1Þ
increases group sparsity. In addition, we can use some mixed
regularizations (e.g., elastic net regularization ðλ1‖x‖1þλ2‖x‖22) [50]
and sparse group sparsity regularization ðλ1‖x‖1þλ2‖x‖2;1) [8]) or
some additional constraints (e.g., non-negative constraint ðxZ0Þ and
shift-invariant constraint ð1>x¼ 1Þ [32]).

3.2.1. Relationship to the nearest subspace (NS) classifier
The NS method [18] aims to seek the best representation in

terms of all the training samples of each class. For a given sample
y, the NS method first k (the number of class) individual regression
problem,

min
xi

1
2
‖y�Aixi‖22þ

λ
2
‖xi‖22; ð6Þ

where Ai denotes the dataset of the ith class, and xi describes its
regression coefficient. The classification is conducted by using a
series of residuals,

in ¼ arg min
i

‖y�Aixi‖22: ð7Þ

Here we present a kernel version of the objective function for the
NS method as

min
xi

1
2
‖ϕðyÞ�ϕðAiÞxi‖22þ

λ
2
‖xi‖22

¼min
xi

1
2
x>
i KAiAi

xi�x>
i KAi

ðyÞþλ
2
‖xi‖22; ð8Þ

where the squared ℓ2-regularization term aims to make the
solution simple and stable. This objective function needs to be
solved k times in order to obtain all representation coefficients
x¼ ½x1; x2;…; xk� where xi stands for the coding coefficient of the
ith class. We note that it is equal to solving the following objective
function

min
x1 ;x2 ;…;xk

Xk
i ¼ 1

1
2
x>
i KAiAi

xi�x>
i KAi

ðyÞþλ
2
‖xi‖22

¼min
x

1
2
x>KAAx�x>KAðyÞþ

λ
2
‖x‖22; ð9Þ

where KAA ¼ diagfKA1A1 ;KA2A2 ;…;KAkAk
g.

Therefore we show that the NS method is a special case of our
KCR framework under the assumption that the kernel matrix of all
training samples is block diagonalized (i.e., samples from different
classes are orthogonal), which is a strong assumption for real
datasets to hold.

3.2.2. Relationship to the nearest neighbor (NN) classifier
Given a test sample y, the NN method assigns it to class i if the

smallest distance from y to the nearest training sample of class i is
the smallest among all classes. It can be viewed as solving the
following objective function:

min
x

1
2 ‖y�Ax‖22

s:t: ‖x‖0 ¼ 1; ‖x‖22 ¼ 1; ð10Þ

which is equivalent to adding the constraint that only one element
of x will be set to 1 and the remaining ones will be set to 0. We
present a kernel version of the NN method within our KCR
framework as

min
x

1
2 x

>KAAx�x>KAðyÞ
s:t: ‖x‖0 ¼ 1; ‖x‖22 ¼ 1: ð11Þ

Generally, the diagonal elements of the kernel matrix KAA are all 1,
and thus the first term of Eq. (11) has no effect on the solution.
Therefore we conclude that the NN method is also a special case of
our KCR framework under a strong constraint on the coding
coefficients ð‖x‖0 ¼ 1; ‖x‖22 ¼ 1Þ.

After the coding coefficients are obtained by Eqs. (9) and (11),
the NS and NN classifications can be carried out by minimizing the
residuals (Eq. (3)).

3.3. Proposed KCR-ℓ2 algorithm

A natural question ensues: which regularization or constraint
yields the best performance for a specific problem? It is concerned
with the regularizations or constraints which match the problem
settings, and whether we can develop an algorithm to obtain an
accurate solution. Furthermore, the time complexity should also
be considered especially for real-time applications.

Based on the proposed KCR framework, we present a simple
classifier for face recognition by using a squared ℓ2-regularization
(which is denoted as KCR-ℓ2). The objective function can be
defined as

min
x

1
2
x>KAAx�x>KAðyÞþ

λ
2
‖x‖22; ð12Þ

where the parameter λ is a regularization constant to make the
solution stable. The solution of KCR-ℓ2 can be easily derived by
setting the derivation of the objective function JðxÞ to zero,

∂JðxÞ
∂x

¼ KAAx�KAðyÞþλx¼ 0; ð13Þ

where JðxÞ ¼ ð1=2Þx>KAAx�x>KAðyÞþλ=2‖x‖22. Then the analyti-
cal solution can be obtained as

x¼ ðKAAþλIÞ�1KAðyÞ: ð14Þ
Let Q denote the first term, Q ¼ ðKAAþλIÞ�1. This term can be
easily pre-computed merely with a training dataset A. Once a
query sample y arrives, we only need to compute KAðyÞ, which
makes our algorithm efficient.

Algorithm 2. KCR-ℓ2 for face recognition.

Input: a training dataset A, kernel function κð�; �Þ, pre-computed
matrix Q ð ¼ ðKAAþλIÞ�1Þ, KAA , and regularization constant
λ.

1. Compute KAðyÞ by Eq. (5)
2. Code a test sample y by KCR-ℓ2: x¼QKAðyÞ
3. Compute the regularized residuals of each i-class by

ri ¼
κðy;yÞ�2x>

i KAi
ðyÞþx>

i KAiAi
xi

‖xi‖22
Output: the identity of y as IdentityðyÞ ¼ arg minifrig

For classification, we use the regularized residuals (Eq. (4)) as
suggested in [45]. We summarize the procedures of our KCR-ℓ2
method in Algorithm 2. We note that the method based on the
collaborative representation [45] can be viewed as a special case of
our KCR algorithm (with linear kernel κðai; ajÞ ¼ a>

i aj under the
assumption that the columns of A are normalized).

It is also worth mentioning that the proposed KCR-ℓ2 method is
different from the kernel ridge regression (i.e., least square kernel
regression) algorithm [2] for face recognition. Kernel ridge
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regression (KRR) is one of the non-linear dimensionality reduction
algorithms similar to kernel principal component analysis (KPCA)
[28], kernel discriminant analysis (KDA) [3] and kernel locality
preserving projection (KLPP) [12]. The objective function of KRR
aims to obtain effective low-dimensional features with labels of
examples. Thus, it requires to use additional classification methods
(such as nearest neighbor classifiers) for classification results. In
contrast, the proposed KCR-ℓ2 algorithm is a classification method,
which is a simple yet effective case within the proposed KCR
framework.

4. Experimental results

We evaluate the performance of the proposed KCR-ℓ2 algo-
rithm for face recognition using several large-scale datasets with
different image modalities. Six databases, including the extended
Yale B [10], AR [22], Multi-PIE [11], PloyU NIR [44], PloyU HS [6]
and EURECOM Kinect [14] datasets, are used to evaluate the
proposed KCR-ℓ2 algorithm and related methods based on nearest
neighbor (NN), nearest subspace (NS) [18], sparse representation
(SR) [36], collaborative representation (CR) [45], and kernel sparse
representation (KSR) [16]. For the SR method [36], considering the
accuracy and computational efficiency, we choose the ℓ1-regular-
ized logistic regression algorithm [17] to solve the ℓ1 minimiza-
tion. For the CR algorithm, we use the codes provided by [45]. We
implement the KSR approach with the kernel coordinate descent
(KCD) algorithm proposed in [16]. To demonstrate the superiority
of the proposed algorithm, we also compare it with other two
state-of-the-art methods, relaxed collaborative representation
(RCR) [41] and regularized robust sparse coding (RRSC) [40]. In
this work, the parameter λ is set to 0.005 for all evaluated methods
and the effect of λ is shown in Section 4.2. All experiments are
conducted using MATLAB implementations on a standard i5-580
2.67 GHz machine with 2.0 GB RAM. The source codes will be
made available to the public for research purposes.

For the KCR-ℓ2 and KSR algorithms, the LBP features [24] and
the Hamming kernel [16] are adopted. We denote these methods
as KCR-ℓ2(LBPþHK) and KSR(LBPþHK) respectively. The LBP8,1
operator [24] is performed on each facial image for feature
extraction, and then the Hamming kernel is applied to the LBP
encoded images. This representation has been shown to perform
better than the LBP histogram with χ2 kernel, especially when
faces are occluded [16]. The Hamming kernel we use is defined as

κðx; yÞ ¼ 1� 1
mN

Xm
i ¼ 1

Dðxi; yiÞ; ð15Þ

where x and y stand for LBP codes of two facial images, m is the
number of image pixels, N is the length of the coding sequence, xi

and yi denote LBP codes at the ith pixel, and Dð�; �Þ denotes the
Hamming distance of two binary sequences. We also implement a
method using the collaborative representation with the LBP
operator and linear kernel (denoted as CR(LBP)), to demonstrate
that the improvement of recognition rates results from both
effective features and proper metrics (e.g., kernel function).

4.1. Face recognition results

4.1.1. Extended Yale B database
The extended Yale B database [10] contains 2414 frontal face

images of 38 subjects taken under 64 illumination conditions. We
collect the cropped and normalized face images of 32�32 pixels
from [4]. A random subset with l images per individual is collected
with their labels to form a training set (l¼5,10,20,30,40,50), and
the rest is considered as the corresponding test set. Fig. 1(a) shows,
under different number of training samples, the KSR(LBPþHK)

[16] and the proposed KCR-ℓ2(LBPþHK) methods perform better
than the other algorithms. Although all methods (except NN)
perform relatively well when sufficient training samples ðl420Þ
are used, the KSR [16] and proposed KCR-ℓ2 methods are more
robust even when the training sample size is small (l¼5). This can
be attributed to that the LBP operator captures intrinsic structure
of individual face images and the kernel based framework success-
fully exploits this property with the proper Hamming kernel. The
CR(LBP) method also performs well because the main challenge of
the extended Yale B database is illumination variation and the LBP
operator captures sufficient image structures under various illu-
mination conditions. However, the combination of LBP features
and linear kernel do not always work well, which will be demon-
strated in this section.

4.1.2. AR database
The AR database [22] consists of over 4000 frontal images of

126 individual persons. As in [36], we choose a subset (with only
illumination and expression change) that contains 50 male sub-
jects and 50 female subjects. For each individual, 14 unoccluded
images, 6 occluded images with sunglasses, and 6 occluded images

Fig. 1. Recognition rates (%) of different algorithms on Extended Yale B [10] and AR
[22] (unoccluded) databases. This figure reports the results of our algorithm and its
competing methods with different number of training images. (a) Extended Yale B
database, (b) AR database (unoccluded).
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with scarves are chosen. Each image is normalized to 32�32
pixels. For performance evaluation of different algorithms under
the un-occlusion condition, a random subset with l images per
individual is taken with their labels to form the unoccluded set
(l¼2,4,6,8,10,12), and the rest of the unoccluded set is considered
as the corresponding test set. Fig. 1(b) shows that the KSR and the
proposed KCR-ℓ2 methods perform favorably against the SR and
CR algorithms, especially when the training sample size is small
(l¼2,4). The mediocre performance of the SR and CR algorithms
can be explained by that the linear representation assumption
does not hold under the “small training size” condition. The LBP
operator could encode intrinsic structure of individual face images
with even small training sample size, and the Hamming kernel
makes full use of this property. Therefore the proposed KCR-ℓ2
method performs well when only 2 or 4 training samples per
individual are used. When 2 training samples per individual are
used, the KCR-ℓ2 method also achieves 2% improvement over the
KSR method. This is because the KSR method encourages sparsity
by using ℓ1-regularization, which increases the risk of incorrect
recognition when only very few training samples are available.

4.1.3. Face recognition with disguise
We also evaluate the ability of face recognition methods to deal

with real occlusions and disguises (See Fig. 3 for some examples)
using the AR database [22]. A random subset with l images per
individual is selected with their labels to form the unoccluded set
(l¼2, 4, 6, 8, 10, 12), the occluded sets with sunglasses and scarves
are used for tests. Fig. 2 shows the results with different settings.
The KSR(LBPþHK) and our KCR-ℓ2(LBPþHK) methods perform
better than the other methods. On the other hand, the SR and CR
methods are less effective in handling occlusions in real-world
images. We note that parts-based representations are used to cope
with this situation [36,45]. Each face image is partitioned into
8 blocks where each block is processed (recognized) indepen-
dently, and the results are aggregated by voting for face recogni-
tion. Thus, the SR(partitioned) and CR(partitioned) methods
achieve more better performance than the traditional SR and CR
ones due to the parts-based representation. The RCR method also
adopts the parts-based representation and learns discriminative
weights on different parts, thus, it performs well in handling this
case. In addition, the RRSC algorithm also achieves better perfor-
mance since the robust sparse coding process can handle

Fig. 3. Samples with sunglasses (first row) and scarves (second row) in the AR database [22].

Fig. 2. Recognition rates (%) of different algorithms used from the AR database [22].
The results show that the evaluated methods perform with different number of
training images. (a) AR database (occlusions with sunglasses), (b) AR database
(occlusions with scarves).
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occlusion to some extent. Fig. 2 demonstrates that although the
use of parts-based representation (CR(partitioned) and SR(parti-
tioned)) facilitates improving recognition results, the KSR
(LBPþHK) and KCR-ℓ2(LBPþHK) methods still perform better
especially when the training size is small. For instance, the
proposed KCR-ℓ2(LBPþHK) algorithm outperforms the parts-
based methods by almost 20% when l¼2 in Fig. 2(a). We also note
that the method based on LBP features with linear kernel (CR
(LBP)) does not perform well, which demonstrates the importance
of a proper metric (kernel function).

4.2. Effect of λ

In this section, we study the effect of λ on the extended Yale B
[10], and AR [22] databases. For the extended Yale B database and
the unoccluded images of the AR database, we randomly split each
of them into two halves. One half is selected as a training set, and
the other half is used for tests. The results of our KCR-ℓ2(LBPþHK)
and related methods on these databases are shown in Fig. 4(a) and
(b). For experiments on occluded faces with the AR database, we
use 1400 unoccluded face images as a training set, 600 images of

subjects wearing sunglasses as a test set, and 600 images of subjects
wearing scarves as another test set. Fig. 5(c) and (d) shows the
results of all the evaluated methods.

From Figs. 4 and 5, we have two interesting and important
observations. First, the kernel-based methods perform more stably
with respect to the value of λ than the other methods. We note that
the most important role of λ is to make the coding coefficients
stable. Since the combination of the LBP features with the Hamming
kernel makes full use of intrinsic structure of face samples, the
effect of λ in kernel-based methods is less important than that of
the other methods. Second, the role of sparsity constraint is less
important. The results show that the KCR-ℓ2(LBPþHK) method
performs as well as the KSR(LBPþHK) algorithm when λ is smaller
than 0.5. However, the KSR(LBPþHK) method simply fails when λ is
larger than or equal to 1. For methods based on ℓ1-minimization,
the importance of sparsity constraint is overemphasized if the value
of λ is too large and thereby drastically affects the recognition rates.
Since there is only one parameter (λ) in the proposed KCR-
ℓ2(LBPþHK) algorithm, the results in Figs. 4 and 5 demonstrate
that the proposed KCR-ℓ2(LBPþHK) method achieves favorable
performance in terms of accuracy and stability.

Fig. 4. Recognition rates of the SR, CR, KSR(LBPþHK), and KCR-ℓ2(LBPþHK)
methods versus different values of λ on the (a) Extended Yale B and (b) AR
(unoccluded) databases.

Fig. 5. Recognition rates of the SR, CR, KSR(LBPþHK), and KCR-ℓ2(LBPþHK)
methods versus different values of λ on the (a) AR (occluded with sunglasses)
and (b)AR (occluded with scarves) databases.
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We compare the run time performance of the SR, CR, KSR
(LBPþHK) methods and the proposed KCR-ℓ2(LBPþHK) algorithm
using the same databases and data collection schemes in Section 4.2.
The recognition rates and average speed are reported in Table 2.
The CR method [45] performs best in terms of execution time.
Compared to the CR method [45], the proposed KCR-ℓ2(LBPþHK)
algorithm requires some additional overhead, including feature
extraction and kernel computation for a test sample. However, the
KCR-ℓ2(LBPþHK) method outperforms the CR algorithm in terms of
accuracy, especially when faces are occluded. We note that although
the KCR-ℓ2(LBPþHK) method performs as well as the KSR(LBPþHK)
algorithm in terms of accuracy, the proposed collaborative represen-
tation algorithm runs at least 10 times faster than the kernel sparse
representation method.

4.3. Face databases of different modalities

In order to show the generalization ability and effectiveness of the
proposed method, we conduct several experiments on other face
databases captured by different lighting sources and modalities.

4.3.1. Large-scale Multi-PIE database
We assess the scalability of the proposed algorithm and state-

of-the-art methods on the large-scale Multi-PIE [11] database.
Although there exist other large-scale datasets (e.g., LFW [13]), the
CMU Multi-PIE [11] database has more images per person which is
necessary for fair evaluations with different number of training
images. The CMU Multi-PIE database [11] contains face images of
337 subjects captured in four sessions with different pose, expres-
sion, and illumination. For comparisons with the CR method [45],
we use the same subset that contains 8916 frontal images of 249
subjects where each face image is cropped and normalized to
32�32 pixels. A subset with l (l¼2,4,6,8,10,12) images per
individual from session 1 is randomly selected to form a training

set, and the rest is used for tests. Fig. 6(a) shows that two methods
of the proposed unified framework, i.e., the KSR and KCR-ℓ2
algorithms, consistently outperform other algorithms especially
when the training sample size is small (l¼2,4).

4.3.2. PolyU Near-Infrared (NIR) database
In recent years, active NIR-based face recognition methods have

demonstrated promising results in several applications [51,20,44].
We evaluate the proposed KCR-ℓ2 method and state-of-the-art
algorithms using near-infrared face images from the PloyU NIR
database [44]. The PloyU NIR database [44] is a large near-infrared
face database consisting of 35,000 images from 350 subjects under
variation of pose, expression, illumination, scale and blur (see Fig. 8
for some sample images). Similar to [44], we use the same subset in
our experiments, which contains 3675 frontal images of 245 subjects.
Each face image is cropped and normalized to 32�32 pixels. A
subset with l (l¼2,4,6,8,10,12) images per individual is randomly
selected to form a training set, and the rest is considered as the
corresponding test set. Fig. 6(b) shows that the KSR and KCR-ℓ2
methods consistently outperform other algorithms especially when
the training sample size is small (l¼2,4).

Table 2
Recognition rates and speeds on different face databases.

Methods Recognition rate (%) Speed (s)

(a) Extended Yale B database
SR 98.3 7.5319
CR 98.3 0.0017
KSR(LBPþHK) 99.8 1.8560
KCR-ℓ2(LBPþHK) 99.8 0.1353
(b) AR database (unoccluded)
SR 91.4 2.9366
CR 94.6 0.0026
KSR(LBPþHK) 98.1 0.8052
KCR-ℓ2(LBPþHK) 99.3 0.0805
(c) AR database (occluded with sunglasses)
SR 56.3 3.2750
CR 62.7 0.0034
SR(partitioned) 94.8 13.212
CR(partitioned) 83.5 0.0731
KSR(LBPþHK) 98.7 2.8387
KCR-ℓ2(LBPþHK) 99.0 0.1823
(d) AR database (occluded with scarves)
SR 53.5 3.2775
CR 74.8 0.0033
SR(partitioned) 90.3 11.688
CR(partitioned) 82.0 0.0658
KSR(LBPþHK) 96.3 2.8485
KCR-ℓ2(LBPþHK) 95.0 0.1767
(e) FERET database
SR 84.0 30.1121
CR 78.0 0.0915
KSR(LBPþHK) 83.0 5.8930
KCR-ℓ2(LBPþHK) 88.3 0.6812

Fig. 6. Recognition rates (%) of different algorithms on (a) large-scale Multi-PIE [11]
and (b) PolyU Near-Infrared (NIR) [44] databases. This figure reports the results of
our algorithm and its competing methods with different number of training images.

D. Wang et al. / Pattern Recognition 48 (2015) 3025–30373032



4.3.3. PolyU Hyperspectral (HS) database
The PolyU Hyperspectral (HS) database [6] consists of 47

individuals. Fig. 9 shows some sample images where the spectral
range is between 400 nm and 720 nm with an increment of 10 nm

(i.e., 33 bands in total). The frontal HS images of the 47 individuals
(from the first cube) are used in the experiments. Similar to [6],
the first six and last three bands are removed due to high noise
level, thereby leaving 24 spectral bands for experiments. The face
images are cropped (the eye coordinates are located manually for
image registration) and normalized to 32�32 pixels. A subset
with l (l¼2, 4, 6, 8, 10, 12) images per individual is randomly
selected to form a training set, and the rest is used for tests.
Fig. 7(a) shows that the KSR and KCR-ℓ2 algorithms perform less
effectively than the other methods. We note that the HS face
images contain significantly more noise than face images from
other lighting sources. As the original LBP features are known to be
sensitive to noise [1], the kernel-based methods (with the LBP
features) do not perform well for hyperspectral images.

4.3.4. EURECOM Kinect database
The EURECOM Kinect [14] dataset consists of multi-modal facial

images of 52 people obtained by Kinect sensors (samples are shown in
Fig. 10). The images are captured in two sessions at different time
periods (about half a month apart). In each session, face images of
each person are collected with 9 different combinations of facial
expressions, lighting and occlusion conditions. The frontal face images
are cropped (where the eye coordinates are located manually for
image registration) and normalized to 32�32 pixels. A subset with l
(l¼2, 4, 6, 8, 10, 12) images per individual is randomly selected to form
a training set, and the rest is used for tests. Fig. 7(b) shows the
recognition results of different algorithms where the NN, NS, SR, CR
and CR(LBP) methods only use the intensity values with the LBP
features and Hamming kernel. For the kernel-based methods, we
evaluate the recognition results using the intensity values (denoted as
KSR(Gray) and KCR(Gray)) and also the combination of gray and depth
information (denoted as KSR(GrayþDepth) and KCR(GrayþDepth)),
in which the LBP codes on Gray and depth images are concatenated
into a single feature vector. The results from Fig. 7(b) show that the
kernel-based algorithms perform better than the other methods as the
LBP operator with Hamming kernel captures sufficient image struc-
tures and is robust to different occlusion conditions. In addition, the
depth information is able to provide additional improvements espe-
cially when the training sample size is small (l¼2, 4).

4.3.5. FERET database
The FERET face image database is a result of the FERET program,

which was sponsored by the US Department of Defense through the
DARPA Program [25]. It has become a standard database for testing
and evaluating state-of-the-art face recognition algorithms, as it has
variations of facial expression, illumination, and pose. The FERET
dataset totally includes 2413 still facial images, representing 856

Fig. 7. Recognition rates (%) of different algorithms on (a) PolyU Hyperspectral (HS)
[1] and (b) EURECOM Kinect [6] databases. This figure reports the results of our
algorithm and its competing methods with different number of training images.

Fig. 8. Samples in the PolyU Near-Infrared (NIR) database [44].
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individuals. In our experiment, the facial portion of each original
image is automatically cropped according to the eyes’ location and
the cropped images are resized to 32 by 32 pixels (some sampled
examples are illustrated in Fig. 11). To compare different algorithms,
a subset with 5 images per individual is randomly selected to form a
training set, and the rest is used for tests. Table 3 demonstrates the
recognition rates of the proposed method and other competing
algorithms, including NN, NS [18], SR [36], CR [45], CR(LBP), RCR
[41], RRSC [40], and KSR(LBPþHK) [16]. It can be seen from this
table that the proposed KCR-ℓ2(LBPþHK) method achieves the best
performance in terms of accuracy. In addition, we use Table 4 to
validate the residue (Eq. (3)) and regularized residue (Eq. (4))
manners in the KCR framework, in which the notions with “-0”
and without “-0” denote the methods with residues and with
regularized residues respectively. The results in Table 4 demonstrate
the effectiveness of the regularized residue manner. By comparing
the 4th and last columns, it also can be seen that the proposed KCR-
ℓ2(LBPþHK) method outperforms the method presented in [42].

4.4. Kernel choice and combination

It can be from Fig. 1(a) that the KCR methods with the LBP
features and Hamming kernel achieve more accurate results than the
traditional methods with linear kernel functions on the extend Yale B
dataset. The underlying reason is that the LBP codes with Hamming
kernel could capture sufficient image structures under various
illumination. However, the LBP codes with Hamming kernel do not

work well on the PolyU Hyperspectral (HS) database (shown in
Fig. 7 (a)), the possible reason is that the image noise limits the
performance of the LBP features in this dataset. Thus, a natural
question ensues: can we choose various kernels for different data-
bases or combine different kernels to achieve a good performance?
Motivated by the multiple kernel learning (MKL) frameworks [27],
we attempt to combine (or fuse) different kernel functions in an
additive manner,

K ¼
XN
i ¼ 1

wiKi

s:t: wi40; i¼ 1;2;…;N

XN
i ¼ 1

wi ¼ 1 ð16Þ

where K denotes the combined kernel function (for both KAA and
KAðyÞ), and Ki is the ith individual kernel function. In this work, it is
difficult to learn the weights of different kernel functions within an
optimization framework (like [27]) because the discussed repre-
sentation-based methods are typically non-parametric models. Thus,
we adopt the cross validation (CV) technique to determine the
optimal weights for classification, i.e., to choose weights that achieve
the best CV accuracy (the leave-one-out CV method is adopted in
this work).

Here, we adopt the KCR-ℓ2 algorithm to investigate the kernel
combination problem for its effectiveness and efficiency. To be

Fig. 9. Samples in the PolyU Hyperspectral (HS) database [6].

Fig. 10. Samples in the EURECOM Kinect database [14]. The first row shows the RGB images. The second row demonstrates the depth maps aligned with above RGB images.
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specific, the linear kernel with raw pixels and the hamming kernel
with LBP codes are combined in this work, i.e., K ¼wKLinearþ
ð1�wÞKLBPHK ; 0rwr1 (w1 ¼w;w2 ¼ 1�w for considering the
constraint w1þw2 ¼ 1). Table 5 report the CV accuracy and the test
accuracy with different weights and varied training samples on the
extended Yale B and PloyU HS datasets. However, from this table, we
can see that the CV accuracy rule cannot guarantee to select a
satisfying weight (e.g., Table 5(b)–(d)). The underlying reason is that
the representation-based methods intend to represent the training
sample very well and lead to a very high CV accuracy.

Therefore, to conduct an effective CV in this work, we introduce
a classification score, which is defined as

sðlÞ ¼ rlin min
j ¼ 1;2;‥;k and ja in

ðrliÞ
� �

;

�
ð17Þ

where sðlÞ denotes the score of lth sample, rli is the regularized
residue of the ith class for sample l1, in stands for the optimal
label (in the CV process, the optimal label of the test sample is
known in advance). The initiative explanation of Eq. (17) is the
regularized residue of the optimal label should be as small as
possible and the second smallest regularized residue should be as
large as possible.

Thus, we can adopt the average score s¼ ð1=LÞPL
i ¼ 1 sðlÞ to

evaluate different models (or parameters), which L stands for the
test number in the CV phase. The CV scores are also reported in
Table 5, in which a smaller score means a better parameter.
Compared with the test accuracies, we can find that the CV score

Fig. 11. Samples in the FERET database [26].

Table 3
The comparisons of different algorithms on the FERET database.

Algorithm NN NS SR CR RCR RRSC CR [45] KSR [16] KCR-ℓ2
[18] [36] [45] [41] [40] (LBP) (LBPþHK) (LBPþHK)

Accuracy 69.5 75.0 84.0 78.0 82.5 81.3 36.3 83.0 88.3

Table 4
The comparisons of the residue and regularized residue for different methods.

Algorithm CR-0 CR KCR-0 [42] KCR [42] KCR-ℓ2-0 KCR-ℓ2
[45] [45] (Guassian) (Guassian) (LBPþHK) (LBPþHK)

Accuracy 68.3 78.0 77.0 84.5 83.0 88.3

Table 5
Cross Validation (CV) for additive kernel combination.

w 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) Extended Yale B database (5 training samples per class)
CV accuracy (%) 96.3 95.8 95.3 91.6 90.0 86.3 83.2 80.5 77.9 74.7 72.6
CV score 0.1734 0.1925 0.2190 0.2410 0.2588 0.2757 0.2835 0.2872 0.2927 0.2894 0.3101
Test accuracy (%) 97.8 97.2 96.6 95.7 94.6 92.6 91.2 89.2 87.1 85.0 83.2
(b) Extended Yale B database (40 training samples per class)
CV accuracy (%) 99.8 99.8 99.8 99.8 99.9 99.9 99.9 99.8 99.7 99.7 98.8
CV score 0.0479 0.0443 0.0423 0.0412 0.0402 0.0388 0.0378 0.0372 0.0368 0.0382 0.0543
Test accuracy (%) 99.4 99.4 99.4 99.6 99.8 99.9 99.8 99.9 99.9 99.9 98.8
(c) PolyU Hyperspectral (HS) database (2 training samples per class)
CV accuracy (%) 100 100 100 100 100 100 100 100 100 100 100
CV score 0.0036 0.0034 0.0032 0.0031 0.0029 0.0027 0.0025 0.0023 0.0021 0.0019 0.0036
Test accuracy (%) 93.0 93.5 93.6 93.9 94.2 94.5 94.8 94.9 95.1 95.3 93.5
(d) PolyU Hyperspectral (HS) database (10 training samples per class)
CV accuracy (%) 100 100 100 100 100 100 100 100 100 100 100
CV score 0.0051 0.0047 0.0042 0.0038 0.0033 0.0029 0.0024 0.0020 0.0015 0.0010 0.0009
Test accuracy (%) 96.2 96.4 96.4 96.4 96.4 96.7 96.7 96.5 97.2 97.2 97.0

1 ri ¼
κðy; yÞ�2xT

i KAi
ðyÞþxT

i KAiAi
xi

‖xi‖22
:
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rule is able to select a good parameter under different conditions
(although the smallest CV score is not corresponding to the best
test accuracy in Table 5(d), it also achieves a not bad choice).

Finally, we compare the proposed kernel combination methods
with individual kernel methods on the extended Yale B and PolyU
HS databases and report the results in Tables 6 and 7. It can be
seen from these tables that the adaptive weight combination
scheme achieves better (or not worse) performance than indivi-
dual kernel methods and the equal weight combination scheme.

5. Conclusion and further work

In this paper, we present a unified framework based on kernel
collaborative representation for linear and non-linear schemes.
The framework provides insights of the relationships among
several effective representation schemes, and facilitates the
designing of new algorithms by choosing kernel functions, reg-
ularizations, and/or additional constraints. Within the proposed
framework, we design a simple yet effective algorithm by using a
squared ℓ2-regularization and apply it to face recognition with the
LBP features and Hamming kernel. Numerous experiments on the
extended Yale B, AR, large-scale Multi-PIE, PloyU NIR, PloyU HS,
EURECOM Kinect and FERET face databases show that our algo-
rithm performs favorably against state-of-the-art methods in
terms of accuracy and speed, especially when the training set is
small and faces are occluded. In addition, an adaptive weight
combination scheme is proposed to combine different kernel
functions. The experimental results demonstrate that the pro-
posed combination method achieve better (or not worse) perfor-
mance than individual methods. Our future work will focus on the
optimal combination of features, kernel functions, regularizations,
and constraints within the proposed framework for face recogni-
tion and other recognition problems.
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