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The inclusion of Renewable Energy Resources (RER) and Electric Energy Storage (EES) can significantly
improve the reliability of rural feeder customers with no cross connect switches to alternative supply.
In such setups, there can be a financial incentive for aggregators to facilitate bulk storage to deal electric-
ity with energy supplier and customers by using optimal scheduling strategy. Within this context, this
paper proposes a framework for network reliability assessment to include bulk storage scheduling strat-
egy in the evaluation. In this technique, seasonal effects on load demand and RER output, electricity mar-
ket price, islanding provisions and EES state of charge (SOC) are taken into consideration. Finally, a case
study is presented to illustrate the application of this approach and to evaluate the results.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In rural networks with long feeders, cross connect switches to
alternative supply feeders may not be economically viable, or even
be practically possible. In such cases often poor reliability is
reported, for instance; as noted in a utility Distribution Annual
Planning Report (DAPR) [1]. Inclusion of EES facilities in these net-
works not only reduces energy and peak network costs for the cus-
tomer, it can significantly improve customers’ reliability by making
some islanding operation possible. Generally, customers are reluc-
tant to invest and manage such expensive devices, therefore aggre-
gator owned bulk storage is recommended in literature [2–6]. But,
in addition to EES, the inclusion of customers’ RER in rural distribu-
tion networks can also complement financial benefits to both
aggregators and customers. Nonetheless, such network arrange-
ments can introduce complications in terms of reliability assess-
ment. Commonly, reliability evaluation methods are categorized
into two main techniques; simulation and analytical methods.
Both techniques are based on failure mode and effect analysis
(FMEA) for evaluating load points and system reliability indices
[7]. With the integration of Photovoltaic (PV) resources and EES
into the distribution system new evaluation approaches are
required to assess the reliability, with different modes of operation.
As part of maximizing the cost benefit operation of storage, an eco-
nomic charge/discharge scheduling strategy is required for bulk
storage devices to take advantage of market price changes. This
scheme needs to be coupled with probabilistic network outage
events for long term economic viability and network planning
purposes.

The reliability assessment methods and various storage
scheduling strategies cited in the literature are briefly discussed
in the following. In [8] the reliability improvement of a distribution
system which incorporates energy storage and renewable energy
generation is investigated. A Model Predictive Control (MPC) based
operation strategy for the energy storage considering wind turbine
as the renewable energy source, and a framework for reliability
assessment has also been proposed. In [3] an intelligent operation
strategy for energy storage that can improve reliability and be inte-
grated with renewable energy is presented. This approach uses
smart grid communication and centralized network control to
implement the proposed energy storage operation. A sequential
Monte Carlo method has been used for reliability evaluation. This
requires a long convergence time and uses a type of data which
may not easily be available.

Researches on strategies to evaluate smart grid reliability have
also been proposed in the literature. In [9] a scenario based tech-
nique has been proposed to assess distribution system reliability
with renewable distributed generators. Related analytical methods
are taken into account including islanding operation, load shedding
and curtailment policies in this approach. The proposed procedures
for reliability evaluation in the foregoing research work can nota-
bly be reduced by using a segmentation based strategy proposed
in [10]. Normally, a long rural feeder with its radial branches
can be formed into segments. A segment is part of distribution
network that starts with a protective device such as an automatic
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Nomenclature

b number of segments
c case index
cch price of extra PV energy to charge EES ($/kWh)
ct tariff price ($/kWh)
cg electricity locational marginal price ($/kWh)
CB circuit breaker
d number of load points in the network
dMPP DC power output drop above STC temperature (25�)
Ech1 energy to charge EES from utility (kWh)
Ech2 energy to charge EES from PV surplus generation (kWh)
Echmax maximum charging power limit (kW)
Edis energy discharged from EES (kWh)
Edismax maximum discharging power limit (kW)
Eg total purchased energy from utility (kWh)
Epv total generated RER (PV) energy (kWh)
EL total load energy demand (kWh)
gc charging efficiency including inverter losses
gd discharging efficiency including inverter losses
ginv inverter efficiency
h number of load points inside the segment
i segment index where fault occurs
j segment index where the load points locate
k line index
LS lower shoulder price ($)
Lsoiling soiling loss
LMP locational marginal price ($)
LP load point
ks;ik failure rate of kth line inside segment i
ks segment failure rate matrix
kLP;s load point failure rate affecting by fault in other seg-

ments
kLP load point failure rate affecting by fault in the same seg-

ment

kk failure rate of line k inside a segment
m number of lines in network
M1 segments’ interconnection relationship matrix
M2 segments and CBs’ interconnection relationship matrix
MP mean price ($)
N number of time periods (e.g. 24 for one day)
n number of lines inside the segment
nc number of cases
NOTC nominal operation cell temperature (manufacturer)
p load point index
Pac AC power output
Pdc DC power output
PPVarray nominal cell output power
q probability of available cases
S insolation in mW/cm2

SOC state of charge of EES at the end of period t
Sp segment number that includes load point p
SSE sum of squared errors
t time period
Tamb ambient temperature
Tcell cell temperature
tsr alternative supply restoration time
tsw1 island formation time for a fault outside the segment
tsw2 fault isolation time for a fault inside the segment
tkr repair time of line k
ULP load point outage time affecting by fault in the same

segment
ULP;s load point outage time affecting by fault in other seg-

ments
Us segment outage time matrix
US upper shoulder price ($)
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switch/recloser, as the only protective switch in this segment [8].
In such modeling [11] if a failure occurs downstream of a switch
in the segment, all the customers in that segment and the down-
stream segments will be disconnected from the grid supply [8].
In such events, even with possible islanding operation, some loads
in the affected segments may still experience a limited outage
immediately after a fault. The reliability evaluation method based
on segmentation, proposed in [10], considers distributed genera-
tors, where the reliability has been evaluated considering load cur-
tailment for some of the islanding situations.

With the emerging distribution networks and the correspond-
ing solutions offered as discussed above, an opportunity is recog-
nized for aggregators to invest and manage segment based bulk
storage. This opportunity occurs as a result of hourly (as modeled
in this paper) or half-hourly change in grid electricity market price,
customers’ load demand, and surplus PV generation. In this con-
text, an aggregator can buy and store customers’ surplus PV gener-
ation and/or grid electricity during daily low price periods and sell
it in the peak load demand period. This dealing arrangement can
benefit both customers and aggregator.

The research work in this paper proposes an optimum economic
strategy for purchase of electric energy in a framework where an
aggregator operates existing bulk storage in dealing with both
retailer and customers. In this context, a systematic approach is
developed to evaluate network reliability while considering the
planned scheduled storage. The main contribution of this paper
is establishing a systematic reliability evaluation method suitable
for large and complex networks as in this method a large network
is broken into a number of small networks for simplifying the reli-
ability assessment. Moreover, scheduled EESs and hourly PV gener-
ation in normal and islanding situations are considered in the
reliability assessment. This approach can also include power
exchange between electrically linked island segments with differ-
ent levels of PV and EES. In fact, this work provides a systematic
link between long term assessment and short term operation in
order to minimize energy cost and improve system reliability. This
work also contributes aggregators and retailers to manage their
storage to get financial benefit while improving the reliability of
their customers.

The remaining sections of the paper are organized as follows.
Section 2 provides problem formulation and methodology. Sec-
tion 3 presents a case study following with the conclusions in
Section 4.
2. Problem formulation and methodology

In a distribution network, aggregator is responsible to provide
power to its customers. It also operates EESs in the distribution
network. The aggregator aims to minimize the energy costs of
the network by using flexible operation of EESs to store low cost
energy and dispatch in peak load hours. The other objective of
aggregator is to use EESs as an alternative supply in islanding oper-
ation mode to supply loads independently and improve the relia-
bility of the system. In this section a scheduling strategy for the
aggregator to minimize the energy costs using k-means clustering
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technique to minimize computation time is proposed. A reliability
evaluation framework to consider storage state of charge is also
developed in this section. The framework of the proposed reliabil-
ity evaluation can be summarized as follows:

(1) Obtain the annual normalized value of hourly load and grid
supply price data from historical data, and PV generated
energy from weather forecast as is explained in Section 2.1.

(2) Form a data set matrix of the hourly load, PV generation, and
grid supply price; arrange a matrix with 365 rows and 72
columns. 72 columns include 24 h’ data of load, price, and
PV generation. Hence, each row of the matrix includes
one-day data of load, price, and PV generation.

(3) Apply elbow method to find the optimal number of clusters
k1 for the data set formed in step 2. Then, apply k-means
clustering technique to find k1 centroid cases with their
associated probabilities. The reason for this clustering is to
find similar days in a year to reduce scheduling computation
time.

(4) Apply the scheduling strategy to all clustered days’ data
found in step 3, to obtain hourly SOC of EESs for the respec-
tive days.

(5) From a data set matrix of hourly load, PV generation, and the
SOC of EESs that are obtained in step 4; form a matrix with
k1 rows and 72 columns.

(6) Apply elbow method to find the optimal number of clusters
k2 for the data set found in step 5. Then apply k-means clus-
tering technique to find k2 centroid cases with the probabil-
ity of each case (associated with hours in a year), forming
the final clustered data. The reason for this clustering is to
reduce the number of representing hours in a year, to
decrease the computation time of reliability evaluation.

(7) Use the data calculated in step 6 to evaluate network
reliability.

In all evaluations, the following assumptions are considered in
this paper:

(1) The bulk energy storage exists and only its scheduling is
considered.

(2) The distribution network is radial and there are no cross-
connect switches in the network.

(3) A segment is a portion of distribution network that starts
with a switching device. It includes customer loads that
are near in one area; loads that are geographically close.
The main supply lines feeding a segment have isolators to
isolate a fault manually.

(4) All switching and protection devices are 100% reliable.
(5) Energy storage devices are 100% reliable.
(6) A fuse is installed at the beginning of each lateral feeder,

where component failure in this section has no effect on
other feeder loads.

(7) The auto protection switches operate instantaneously, so
their operation time is neglected.

(8) The transient effects are not considered in this paper.
(9) Once a switching device operates, PVs inside the relevant

segment are disconnected automatically and following the
island formation, PVs are restored automatically after a
defined time.

(10) It is assumed that EESs are selected such that maximum
charging and discharging capability satisfy the line capacity
limitations in the network.

(11) The aggregator is responsible for the investment and main-
tenance costs of the bulk EESs.

(12) The aggregator purchases electric energy from wholesaler/
retailer to serve its customers.
(13) The aggregator can purchase customers excess PV genera-
tion with a certain price; cch.

(14) The aggregator sells electricity to customers at the prevail-
ing retail tariff price (tariff 12 Queensland) irrespective of
whether that energy is sourced from the utility or EES
discharge.

(15) The aggregator can sell electricity to the utility (wholesaler/
retailer) at any time at the locational marginal price (LMP).

(16) The aggregator can charge or discharge EESs at any time,
choosing any of the EESs for this purpose considering the
technical constraints.

(17) The islanding operation is allowed and distributed PVs and
storage’s operation in islands is stable.

2.1. EES scheduling strategy

The purpose of utilizing scheduling strategy is to manage a seg-
ment’s EES charge and discharge in order to minimize the total
energy cost. This is evaluated while reserving a minimum level
of EES state of charge to provide an alternative source of supply
in the event of islanded operation mode in the network.

The total purchased energy by the aggregator at the end of each
time period t can be calculated as follows [12]:

EgðtÞ ¼ ELðtÞ � EpvðtÞ þ Ech1ðtÞ � EdisðtÞ ð1Þ
The energy delivered to the storage at each time interval t can

be purchased from utility (ECh1) or from PV surplus generation
(ECh2). The objective function for total cost optimization is:

M ¼ minðCÞ ð2Þ
where

C ¼
XN
t¼1

Eg

^
ðtÞ � cg

^ ðtÞ þ Ech2ðtÞ � cchðtÞ � EdisðtÞ � ctðtÞ ð3Þ

Eg

^
ðtÞ ¼ EL

^
ðtÞ � Epv

^
ðtÞ þ Ech1ðtÞ � EdisðtÞ ð4Þ

where the hat symbol (^) represents the forecast values and N is the
number of time periods (e.g. 24 for one day).

By optimizing the total cost of energy for a period of 24 h in
advance, the aggregator is able to decide on purchasing electricity
based on charging EES during the lowest price and highest PV gen-
eration periods, and discharging EES during peak load and high
price periods. The EES in this paper is modeled as its state of
charge, charge, and discharge in each time period t. The SOC at
the end of period t can be calculated as follows [13].

SOCðtÞ ¼ SOCðt�1Þþgc �ðEch1ðtÞþEch2ðtÞÞ charging period
SOCðt�1Þ� ð1=gdÞ�EdisðtÞ discharging period

�

ð5Þ
All variables should be within their operating limits. Minimum

state of charge should be considered to ensure a defined amount of
electricity for peak load provision:

SOCminðtÞ 6 SOCðtÞ 6 SOCmaxðtÞ ð6Þ

0 6 Ech1ðtÞ þ Ech2ðtÞ 6 Echmax ð7Þ

0 6 EdisðtÞ 6 Edismax ð8Þ
The ‘‘fmincon” function with interior point solver in MATLAB is

used for this optimization.
Methods have been developed for load, price, and PV generation

forecasting [14–22]. These approaches can be used to obtain load
demand and energy price for a variety of applications. As forecast-
ing methods are not the focus of this paper, it is assumed that the
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forecast load and price data are given. The PV generation in this
paper; Pac is obtained from annual hourly weather forecasted data
using the following equations [23]:

Tcell ¼ Tamb þ NOCT � 20�

0:8

� �
� S ð9Þ

Pdc ¼ PPVarray � 1� dMPP � ðTcell � 25�Þ½ � ð10Þ

Pac ¼ Pdc � Lsoiling � ginv ð11Þ
The basic procedure of the proposed method is that; a cost opti-

mization problem determining the EES operation for the next 24 h
(24 periods) is solved in advance. The estimated energy price is
divided into four price bands between minimum to maximum
for that day. The more number of price bands require substantially
more computations, while four price bands using trial and error
proved to be adequate in retaining good accuracy in results. Opti-
mization is based on the electricity price, available PV generation
and load consumption in the next period (hourly periods are con-
sidered). The scheduling strategy determines whether to charge or
discharge the EESs and import or export power from the utility.
The steps of the proposed strategy are as follows:

(a) Obtain the predicted load, price and available PV generation
for the 24 h ahead.

(b) For each period, assess the load demand compared with
available PV generation. Select one of the two different
choices based on PV output; less than load or greater than
load.

(c) Allocate the price of electricity from four available choices
among the five following limits, based on forecasted electric-
ity price:

(a) Minimum price
(b) Lower shoulder (LS)
(c) Mean price (MP)
(d) Upper shoulder (US)
(e) Maximum price
(d) Classify daily loads in two parts; equal to or greater than 80%
of the peak load, and the remaining. This is to consider max-
imum discharge from storage in peak load times.

(e) Assign the constraints for optimization according to the
flowchart in Fig. 1 that includes upper and lower limits for
EES charge and discharge based on load amount, electricity
price, and PV generation. Margins for EES state of charge
should be considered in all periods based on forecasted load.

(f) Solve the optimization problem for the next period consider-
ing previous SOC of the storage and future periods to obtain
the energy charge (import) and discharge (export) in current
period.

(g) Continue for the next period, starting from step b.

2.2. K-means data clustering

Clustering techniques can be used to generate substantially
reduced multiple states from that of hourly historical data of load
and renewable resources. In this paper, the k-means clustering
technique is used to find non-overlapping clusters which represent
a multiple states model for PV and load. The main advantage of this
technique is that with a large number of variables, k-means may be
computationally faster than hierarchical clustering. Moreover, k-
means may produce tighter clusters than hierarchical clustering,
especially if the clusters are globular. In addition, this technique
is simple, easy to implement and easy to interpret the clustering
results. In general, k-means is a prototype-based, simple
partitioned clustering algorithm that attempts to find k non-
overlapping clusters. These clusters are represented by their cen-
troids (a cluster centroid is typically the mean of the points in that
cluster) [24]. The steps of the k-means clustering technique used in
this paper are as follows;

1. The data set to be clustered can be expressed as D ¼ fx1; . . . ; xng.
The Parameter xi is a vector, consisting of data points for each
period. In general, the probability of each cluster is qx.

2. k initial centroids (m) [24] are selected, where k is specified by
the user and indicates the desired number of clusters. Methods
for obtaining optimal k are presented in literature [25–27]. In
this paper the elbow method is used [25] to find optimal num-
ber of clusters. The idea of the elbow method is to run k-means
clustering for a range of values of k and calculate the sum of
squared errors (SSE) for each value of k. Then, plot a line chart
of the SSE as a function of k. If the line chart looks like an
arm, then the ‘‘elbow” on the arm is the value of k that is the
optimum one. In fact, the smaller SSE is desired but the SSE
decreases towards zero when k increases. The SSE is equal to
zero when k is equal to the number of data points in the dataset.
In this case, each data point is its own cluster and there is no
error between it and the center of its cluster. So our goal is to
choose a small value of k that still has a low SSE. The elbow
point usually represents where the SSE starts to decrease by
increasing k.

3. Compute the squared Euclidean distance that is ||x–m||2 for
each data set. Every point in the data set is then assigned to
the closest centroid, and each collection of points assigned to
a centroid forms a cluster. The k-means can be expressed by
an objective function that depends on the proximities of the
data points to the cluster centroids in (12), as follows:

min
XK
k¼1

X
x2Ck

qx � distðx;mkÞ ð12Þ

4. The centroid of each cluster is then updated based on the points
assigned to that cluster. This process is repeated until no point
changes clusters.
The aim of using k-means data clustering is to substantially

reduce computations while retaining good accuracy by applying
the clustering technique to the annual hourly data. In this paper,
the first clustering is to find similar days in term of load, PV gener-
ation and grid supply price in a year, in order to apply a daily
scheduling strategy. The second clustering is to find similar possi-
ble hourly data cases of the first similar daily clusters, to be used
for the proposed reliability assessment scheme.
2.3. Analytical reliability evaluation

This section provides a suitable reliability assessment for the
ESS scheduling method proposed in this paper, based on the seg-
mentation structure given in [10]. This approach is based on con-
tingency scenario enumeration, where seasonal load and PV
generation clustered data, together with the storage state of charge
is incorporated into the framework for network reliability
evaluation.

Briefly; in this strategy, the three matrices of ULP,s, Us, and ULP

for outage times and three matrices kLP,s, ks, and kLP for failure rates
are formed in two stages. The total load point outage time and fail-
ure rate are obtained from these matrices. The process of the pro-
posed reliability approach includes two stages. The first stage is
explained in steps 1 and 2. The second stage is presented in steps
3–5 as followings.



Fig. 1. Flowchart for optimization constraint determination.
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Stage one:

� In the first stage of the process, in order to simplify the network,
aggregate all loads and PVs in each segment separately, at the
storage node in the same segment. This will form a simple net-
work of lumped loads and sources as shown in Fig. 2a and b.

� Evaluate outage time, as shown in the flowchart of Fig. 3. For all
possible contingencies in the newly formed network use the
segment based evaluation method presented in [10]. In this
step, two b by b matrices of outage time Us and failure rate ks

for affected segments, and two b by d matrices ULP,s and kLP,s

for load points affected by internal segment faults are evalu-
ated. This process is explained using an example as follows:
2.1. Consider the network of Fig. 2a divided into 5 segments
as shown. The Segment interconnection relationship matrix
M1 can be defined for this network as in [10]. M1 (i, j)
describes the interconnection relationships of segment i
(Si) and segment j (Sj) as follows:
M1 (i, j) = 0 if Si and Sj are the same
M1 (i, j) = 1 if Si is upstream of Sj
M1 (i, j) = 2 if Si is downstream of Sj
M1 (i, j) = 3 for other cases

For the network of Fig. 2a, the M1 matrix is:

M1 ¼

0 1 1 1 1
2 0 1 3 1
2 2 0 3 3
2 3 3 0 3
2 2 3 3 0

2
6666664

3
7777775

2.2. M2 (i, j) describes the interconnection relationship between
Sj and the CBi which is tripped by the fault in Si [10]. In
practice, the value of M2 (i, j) is equal to M1(CBi, j). For network
of Fig. 2a:



Fig. 2. Distribution network single line diagram. (a) Distribution network divided into segments. (b) Aggregated load and PV in each segment to simplify the network. (c)
Island 1 formation immediately after fault occurrence in segment 1. (d) Island 2 formation after fault is isolated manually in segment 1.
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Fig. 3. Segment based failure modes and effects evaluation by looking at segments as single load points.
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M2 ¼

0 1 1 1 1
2 0 1 3 1
2 0 1 3 1
2 3 3 0 3
2 2 3 3 0

2
6666664

3
7777775

For different fault scenarios, considering that fault is inside Si
and load point p is in Sj. The following cases can be expressed:

2.2.1. M1(i, j) = 0

In such case, fault i is inside segment j. So the fault impact on
load points within this segment should be evaluated in the second
stage of the process where each segment is treated as an
independent network. In this first stage of assessment, the failure
rate and outage time of segment j are considered equal to zero.
The actual values are evaluated during the second stage of the
assessment.

Usði; jÞ ¼ 0 ð13Þ

ksði; jÞ ¼ 0 ð14Þ
2.2.2. M1(i, j) = 1
Segment j in this case is downstream of the faulted segment.

Based on CB operation,M2(i, j) can be 0 or 1 meaning that the oper-
ating CB is inside or upstream of segment j. In such situation:

ksði; jÞ ¼
Xn
k¼1

ks;ik ð15Þ

In the case of sufficient alternative supply for all load points
inside segment j:

Usði; jÞ ¼ tsr þ tsw1 ð16Þ
Otherwise, the outage time ULP,s and failure rate kLP,s matrices
should be calculated for the load point p inside segment j affected
by a fault in segment i, as follows:

kLP;sði;pÞ ¼
Xn
k¼1

ks;ik ð17Þ

ULP;sði;pÞ ¼ tsr þ tsw1 alternative source

tkr otherwise

�
ð18Þ

This case can be explained using Fig. 2c and d, for example,
when i = 1, j = 2; island 1 forms immediately after fault is detected
and CBs in segment 1, 2, and 4 tripped. After the time tsw1 fault is
isolated manually and island 2 forms. Then after the time tsr, PVs
and storage in island 2 will be restored and supply the loads inside
the island. If there is sufficient alternative source for load points
inside the island, the time to repair is not included in the outage
time. In order to evaluate the sufficiency of alternative supply in
the segment, the load points with the higher priority are supplied
first based on the available SOC and PVs in the segment. Then the
rest of the loads that remains unsupplied will shed.

2.2.3. M1(i, j) = 2

Segment j in this case is upstream of faulted segment. Based on
CB operation, two subcases occur:

� M2(i, j) = 1, when the operated CB is upstream segment j:

ksði; jÞ ¼
Xn
k¼1

ks;ik ð19Þ

Usði; jÞ ¼ tsw1 ð20Þ
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� M2(i, j) = 0, when the operated CB is inside segment j:

For loads inside segment j that are located upstream of operated
CB:

kLP;sði; pÞ ¼ 0 ð21Þ

ULP;sði;pÞ ¼ 0 ð22Þ
For loads in segment j that are located downstream of operated

CB:

kLP;sði; pÞ ¼
Xn

k¼1

ks;ik ð23Þ

ULP;sði;pÞ ¼ tsw1 ð24Þ
� M2(i, j) = 2, when the operated CB is downstream segment j:

ksði; jÞ ¼ 0 ð25Þ

Usði; jÞ ¼ 0 ð26Þ
2.2.4. Or M1(i, j) = 3
In such case, segment j is neither upstream nor downstream of

the faulted segment i. So two subcases are possible:

� M2(i, j) = 1, when operated CB is upstream segment j:

ksði; jÞ ¼
Xn
k¼1

ks;ik ð27Þ

Usði; jÞ ¼ tsw1 ð28Þ
� M2(i, j) = 3, when operated CB is neither upstream nor down-
stream segment j:

ksði; jÞ ¼ 0 ð29Þ

Usði; jÞ ¼ 0 ð30Þ
After finalizing this step, the outage time and failure rate matri-

ces for segments and load points affected by segment failures are
obtained.

Stage two:

� Now (second stage) in this step, consider each segment as an
independent network and form new small networks. Evaluate
load points’ outage time within new formed networks. So, two
m by d matrices of load point failure rate kLP and load point out-
age time ULP are obtained by arranging n by h matrices of U and
k for each segment diagonally in one matrix. The existing sce-
narios can be given in the following steps for fault on line k:
3.1. For LPp connected to the grid:
kLPðk;pÞ ¼ kk ð31Þ

ULPðk; pÞ ¼ tsw2 ð32Þ
3.2. For LPp in islanded mode:
kLPðk;pÞ ¼ kk ð33Þ

ULPðk;pÞ ¼ tsr þ tsw1 þ tsw2 alternative source

tkr otherwise

�
ð34Þ
3.3. For LPp on outage:
kLPðk;pÞ ¼ kk ð35Þ

ULPðk; pÞ ¼ tkr ð36Þ
4. The overall outage time ULP and failure rate kLP for load point p
of the main network can be calculated as follows:

kLPðpÞ ¼
Xb

i¼1

kLP;sði; pÞ þ
Xm
k¼1

kLPðk; pÞ þ
Xb

i¼1

ksði; spÞ ð37Þ

ULPðpÞ ¼
Xb

i¼1

kLP;sði;pÞ � ULP;sði;pÞ þ
Xm
k¼1

kLPðk;pÞ � ULPðk;pÞ

þ
Xb

i¼1

ksði; spÞ � Usði; spÞ ð38Þ

5. The network reliability indices then can be calculated, using
load points’ unavailability and failure rates, considering proba-
bility of each case. For example, the SAIDI index for each cluster
is determined by (39) and annual SAIDI can be obtained by con-
sidering the probability of each cluster in a year using (40):

SAIDI ¼ sum of customer interruption duration
total number of customer

¼
P

UiNiP
Ni

ð39Þ

ANNUALSAIDI ¼
Xnc
c¼1

SAIDIðcÞ � qðcÞ ð40Þ

In the proposed reliability assessment strategy, all possible sce-
narios are taken into account.

3. Case study

The proposed method in this paper is applied to the modified
feeder 4 at bus 6 of the RBTS network [28], as illustrated in Fig. 4.

The reliability data can be found in [28]. The PV’s power output
is calculated using actual annual sun radiation data collected on
hourly basis from Australian Climate Data Bank (ACDB). The load
data of the network is based on hourly load of South East Queens-
land distribution network, Australia. The price of electricity is
obtained from real data in Australian Energy Market Operator
(AEMO).

At the first step, k-means clustering technique is applied to the
data in order to cluster 365 days (8760 h) into 40 representative
days. The number 40 is obtained from elbow method which finds
the optimum number of clusters. The reliability assessment tech-
nique given in this paper is applied to evaluate the described net-
work for three different cases.

The defined cases are listed as follows:

Case I: There is no EES in the network. PVs are the only alterna-
tive supply in this case.
Case II: In this case aggregator adds EES to each segment; how-
ever, no scheduling strategy is applied. The no scheduling strat-
egy means that; EES stores surplus PV energy and delivers
during peak hours, without applying any optimization.
Case III: In this case EES scheduling optimization strategy is
applied to the network.

EES scheduling strategy is then applied to each segment in the
network using the load, electricity price, and PVs’ output cluster
days. This is followed by the second k-means clustering of load,
PV, and SOC data for each segment. In order to maximize the cor-
relation of the clusters, normalized values of PV generation, load
and SOC of the EESs are used in the clustering. The second cluster-
ing procedure resulted in 10 representative hours that are used for
reliability evaluation. The number of clusters 10 is obtained from
elbow method. Fig. 5 shows the graph of SSE as a function of k
for this case study to find the elbow point which represents the
optimum number of clusters for our data set. As the figure shows,
the optimum k in the elbow point is equal to 4. However, in order



Fig. 4. Modified feeder 4 at bus 6 of the RBTS network [28].
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Fig. 5. Sum of squared errors (SSE) as a function of number of clusters in elbow
method.
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to consider a safety margin, k is considered equal to10 for our clus-
tering calculation at this stage.

Fig. 6 provides stacked bar chart of 10 clusters for segment 1.
The values of load and PV generation in kW and SOC in kWh with
the corresponding cluster probabilities are given separately in
Table 1. As the figure shows, the various possible mix of load,
PV’s power and SOC is obtained from the clustering which repre-
sent the data of a year considering the probability of each data
mix happening in the year.
The data associated with storage devices are as shown in
Table 2. The minimum and maximum energy storage level in this
table represents SOCmin and SOCmax which is defined by the storage
manufacturer. In this work, a minimum SOC of 500 kWh is consid-
ered as the provision of alternative supply in islanding situation.
Maximum charge/discharge power limit in the table represents
Echmax and Edismax defined by the storage manufacturer.

The EESs’ capacity for the network of Fig. 2 is selected based
on the excess PV generation capability of a day represented by a
cluster belonging to days with highly excess PV generation in
each segment. Also it is assumed that the charge/discharge
power limits comply with the lines current capacity in each
period.

After applying the proposed method of this work to the three
case studies, the reliability indices and total cost of purchased
energy for all cases are obtained as presented in Table 3. As the
results show, installation of the EES offers a saving in the cost of
purchased energy, in addition to a significant improvement in
the reliability indices. By considering storage as an alternative sup-
ply in addition to PVs in the islands, an increase of about one hour
in a year for SAIDI is achieved. In terms of CAIDI the improvement
is about 1.5 h per year. The reason for the outage time reduction is
that islanding operation is allowed in the third case considering
storage SOC for supplying loads in island. ENS has also a significant
improvement due to reducing the number of interrupted cus-
tomers. The improvement of SAIFI is also significant in the third
case due to lower number of customers affecting by the fault.
The improvements in reliability indices from case one to case
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Fig. 6. Normalized values of Load, PV, and SOC for 10 clusters.

Table 1
The 10 cases of clustered Load, PV generation, and SOC for segment 1.

Case Load (kWh) PV (kWh) SOC (kWh) Probability

1 5859.87 77.25 4403.22 0.0738
2 5627.12 4394.97 4326.67 0.249
3 4711.97 1988.36 4436.62 0.0433
4 5317.08 1216.78 4361.58 0.1222
5 5471.83 2951.18 4328.34 0.1891
6 8495.84 0.00 824.31 0.1074
7 3442.06 57.46 4428.58 0.0878
8 2826.80 1.24 4397.26 0.1034
9 4340.00 73.22 4432.06 0.017
10 3385.05 126.22 1285.31 0.0071
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two is not notable since in the second case there is no strategy for
alternative supply provision in islands. Consequently, the probabil-
ity of supplying loads by the storage in islands is very low. In terms
of cost of purchased energy, the decrease in cost of energy can be
Table 3
Reliability assessment results for the three cases.

Indices SAIDI (h/cust-yr) CAIDI (h/cust-int) ENS (MWh/yr)

Case I 2.6314 2.7450 43.44
Case II 2.5201 2.6289 41.01
Case III 1.8532 1.9332 31.19

Table 2
EES technical data.

Segment number 1

Minimum energy storage level (kWh) 200
Maximum energy storage level (kWh) 5000
Maximum charging/discharging power limit (kW) 1000
Charging/discharging efficiency including inverter losses 0.75
counted as an economic justification for the aggregators/retailers
for central storage installation in their network.
4. Conclusion

In this paper, a new strategy for aggregator owned bulk EES
scheduling is proposed to optimize the cost of purchasing energy
from retailer by the aggregator in rural distribution networks. In
this set-up, a systematic approach is devised to evaluate reliability
indices for rural distribution networks efficiently, including the
impact of scheduling bulk EES in islanding situations. The seasonal
effects on PV output, load demand, and consequently on schedul-
ing process are also considered in the proposed framework. The
results for different case studies in this paper show the effective-
ness of this approach in reliability evaluation of complicated net-
works with PVs and EESs, while reducing the total aggregator
purchasing energy costs. As for the future research recommenda-
tion; investment and maintenance costs of EESs for achieving
SAIFI (Interruptions/Customer) Total cost of purchased energy ($/yr)

0.9586 28,895,001
0.9586 24,000,520
0.9586 16,124,010

2 3 4 5

200 200 200 200
3000 4000 3000 4000
1000 1000 1000 1000
0.75 0.75 0.75 0.75
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specific reliability target for the network is suggested to be
included as part of the optimum storage sizing and siting.
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