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a b s t r a c t 

Smart Grid markets are dynamic and complex, and brokers are widely introduced to better manage the 

markets. However, brokers face great challenges, including the varying energy demands of consumers, 

the changing prices in the markets, and the competitions between each other. This paper proposes an 

intelligent broker model based on hybrid learning (including unsupervised, supervised and reinforcement 

learning), which generates smart trading strategies to adapt to the dynamics and complexity of Smart 

Grid markets. The proposed broker model comprises three interconnected modules. Customer demand 

prediction module predicts short-term demands of various consumers with a data-driven method. Whole- 

sale market module employs a Markov Decision Process for the one-day-ahead power auction based on 

the predicted demand. Retail market module introduces independent reinforcement learning processes 

to optimize prices for different types of consumers to compete with other brokers in the retail market. 

We evaluate the proposed broker model on Power TAC platform. The experimental results show that our 

broker is not only is competitive in making profit, but also maintains a good supply-demand balance. In 

addition, we also discover two empirical laws in the competitive power market environment, which are: 

1. profit margin shrinks when there are fierce competitions in markets; 2. the imbalance rate of supply 

demand increases when the market environment is more competitive. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Smart Grid markets are complex and dynamic. The complex-

ty is ascribed to the various participators and interactions be-

ween multiple stakeholders. There are various participants, in-

luding large energy generators, general consumers, interruptible

onsumers and storage consumers, and even renewable energy

roducers, such as solar power systems and wind turbines. In such

 two-way power flow system, there are multiple interactions be-

ween consumers, prosumers 1 and energy suppliers. The dynam-

cs are caused by the varying energy demands, changing prices

nd customer migrations. The energy demands can vary from time

o time because of the fluctuations of energy needs by time and

he mutable weather conditions. Prices may also change accord-

ng to the designed pricing mechanisms [11] , or the energy supply

nd demand status. The autonomous end users may switch tariffs
∗ Corresponding author. 

E-mail addresses: xw357@uowmail.edu.au (X. Wang), minjie@uow.edu.au (M. 

hang), fren@uow.edu.au (F. Ren). 
1 Prosumer refers to the market participant as both a producer and a consumer, 

rst used by Alvin Toffler in 1970. 
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ased on their own utilities. Due to the complexity and dynamics,

t is of great challenge to manage Smart Grid markets. 

To ameliorate the management of such complex markets, bro-

ers are widely employed. Brokers, who buy energy from the

holesale market and sell it to the retail market, form a decentral-

zed mode to enhance the efficacy of Smart Grid markets. In the

ower trading, brokers simultaneously interact with the wholesale

nd retail markets. In the wholesale market, brokers buy energy

4 h ahead through auctions. There are different energy suppli-

rs, such as thermal power generators, hydropower generators and

ind power generators. The various energy suppliers exhibit dif-

erent prices, quantities and stabilities. In the retail market, bro-

ers try to attract more customers and sell out their energy to

ake more profit. Different consumers have different requirements

n the price, quantity, quality and time of energy usage. A suc-

essful broker should not only maximize his own profit, but also

eep a good supply-demand balance in the two markets to im-

rove the energy efficiency. However, the excellent broker has to

ope with the omnifarious challenges. For the wholesale market,

here are dynamics in energy price, quantity and stability because

f the various energy suppliers. To purchase a proper amount of

nergy for the each of coming 24 h, a customer demand predic-

ion is needed, but is a very challenging issue in Smart Grid due to
roker model for strategic power trading in smart grid markets, 
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the various behaviors of different customers and customers’ migra-

tions between brokers. Moreover, a bidding strategy is required to

optimize the bidding prices in auctions, with the considerations of

competitions among other brokers. For the retail market, there are

variety of consumers with various behaviors. An excellent broker

should consider the different types of consumers and their differ-

ent power usages. Besides, the broker should also deliberate on the

dynamics and uncertainty of customers’ behaviors in power usage.

Moreover, the broker also needs an efficient strategy to compete

with other brokers to attract customers in the retail market. 

To construct a systematic broker model and to efficiently sur-

mount the challenges in Smart Grid markets, three goals are es-

tablished in our designation of a good broker model: Goal 1 is to

efficiently predict the energy demand of customers, so as to keep a

good balance of supply and demand; Goal 2 is to obtain energy as

the required demand in the wholesale market with a lower price;

and Goal 3 is to sell energy to customers with a proper price,

which can ensure a good profit and attract customers. This pa-

per proposes a broker model with effective methods to achieve

the above three goals. For Goal 1, a data-driven method is pro-

posed to first cluster various customers according to their energy

consumption patterns, and then predict the one-day-ahead hourly

demand of subscribed customers. For Goal 2, the Markov Decision

Process (MDP) is employed for energy auctions in the wholesale

market. For Goal 3, independent reinforcement learning processes

are introduced to optimize prices for different types of customers.

The proposed broker model is evaluated on the platform of Power

Trading Agent Competition [8] (Power TAC), which supplies a prac-

tical simulation of the complex Smart Grid markets based on real

data. 

The proposed broker model contributes to the research in Smart

Grid markets in four aspects. 1) A systematic framework of bro-

ker model is designed to simultaneously balance supply and de-

mand and optimize energy prices in both the wholesale and retail

markets. This framework will enlighten the designations of future

broker models in Smart Grid markets. 2) Hybrid learning is intro-

duced as an effective way to adapt to the dynamics in markets. Un-

supervised, supervised and reinforcement learning approaches are

integrated to construct a systematic model, which can efficiently

adapt to the dynamics in Smart Grid markets. The experiments

have demonstrated that the proposed broker model works better

than the previous models. 3) A new data-driven customer demand

prediction method is proposed. This method deeply explores the

energy consumption patterns of various customers, and then in-

tegrates supervised learning to predict the future energy demand.

The proposed method provides an efficient way to predict the en-

ergy demand for a variety of customers, and can be extended to

demand prediction in a market level. 4) Independent SARSA pro-

cesses [2] are used for different consumers in the retail market,

and the experimental results have demonstrated that it is an ef-

fective way to compete with other brokers. 

2. Related work 

Broker modeling in Smart Grid markets is an emerging research

field and there have not been much literatures. In 2012, Power TAC

started and supplied a simulated real-world Smart Grid market en-

vironment. Some broker models have been developed since then,

but there have been not many available literatures. AstonTAC team

[9] introduced MDP approach for auctions in the wholesale mar-

ket, and employed different HMMs to predict the price of energy

and the customer demand. The AstonTAC can keep a good supply-

demand balance, but it does not take effective strategy to attract

customers in the retail market. Urieli and Stone [22] developed a

broker model called TacTex and won the Power TAC in 2013. They

decomposed the global optimization into sub-optimizations in the
Please cite this article as: X. Wang et al., A hybrid-learning based b

Knowledge-Based Systems (2016), http://dx.doi.org/10.1016/j.knosys.201
holesale and retail markets. Locally weighted linear regression

as introduced to predict if the customers would subscribe his tar-

ffs. The TacTex wins in profit making, but it does not make much

ffort on supply-demand balance. The CwiBroker team [10] used

ame theories in both wholesale and retail markets to maximize

he profit. In contrast, our broker model takes both profit making

nd supply-demand balance into considerations, resulted in a more

omprehensive method in coping with the complexity and dynam-

cs in Smart Grid markets. 

Demand prediction has been intensively studies in Smart Grid

19,23] . A variety of models have been proposed, including time

eries models [6] , ARIMA [17] , neural networks [4] and so on.

ecently, some novel learning-based methods have been pro-

osed. Srinivasan [18] introduces a group method of data handling

GMDH) neural network for mid-term energy demand prediction.

n his method, six categories of consumers are predicted respec-

ively, yet the customer groups are stipulated manually. Amjady

t al. [3] uses a bilevel method, which is composed of a feature se-

ection technique and a forecasting engine, to predict the demand

f a single micro-grid. Their method has been tested on the de-

and prediction of a campus. However, a large scope of customers,

specially for the market level, has not been demonstrated in their

ethod. Motamedi et al. [12] combine a multi-input multi-output

orecasting engine for joint price and demand prediction with data

ssociation mining algorithms, through which the relationship of

emand and price is extracted. This method is applied to a macro

cope, regardless the types of customers. 

Generally, previous prediction methods either focus on all cus-

omers as a whole or a special customer. None of them explores

he behaviors of different customers in a market level. The predic-

ion method we proposed is a data driven method, based on the

ature of customers. Customers are hierarchically clustered based

n their historical usage data. Different usage prediction methods

re tailored for customer clusters with different energy consump-

ion patterns. Thus our method is applicable and effective for mar-

et level prediction. 

Pricing mechanisms have been deeply explored in Smart Grid

5,11,15] with the objective of curtailing peak load, while literatures

n pricing strategy on the stand of a broker are rare. Recent work

n [13] by Peters et al. used reinforcement learning with function

pproximation to adapt to the economic signals from the retail

arket. In their work, a range of market features were studied and

ffective f eatures are selected. Their work gives a good hint to this

esearch. Different from their work, independent SARSA processes

re introduced for different types of customers in our method. The

ndependent SARSA processes can be easily implemented with par-

llel computing technology for efficiency. 

. Definitions and framework design 

In this section, the terms that are used in the rest of the paper

re defined, and the framework of the proposed broker model is

escribed. 

.1. Definitions 

efinition 1 (Bootstrap data) . Bootstrap data B D are the historical

ata of customer usages in the retail market. It is represented as

he following matrix, 

 D = 

⎛ 

⎜ ⎜ ⎝ 

u 11 u 12 · · · u 1 T b 

u 21 u 22 · · · u 2 T b 
. . . 

. . . 
. . . 

. . . 
u N1 u N1 · · · u NT b 

⎞ 

⎟ ⎟ ⎠ 

, (1)
roker model for strategic power trading in smart grid markets, 
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Fig. 1. The framework of the proposed broker model. 
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2 The balancing price is for the power from high-level grid, for example, the state 

grid. As the delivery distance is long, balancing price may be much higher than the 

market price. 
here u ij is the hourly usage of customer i in hour j, N is the total

umber of customers, and T b is the length of a usage sequence of

ustomer i . 

efinition 2 (Usage gradient) . Usage gradient G i =
 g 1 , g 2 , · · · , g 24 ] , is a 24-dimension vector that reflects how

he hourly usage amount of customer i changes in 24 h. Each

lement g k is calculated in a usage sequence of customer i . 

Assuming there is a N day length usage sequence { u n 
k 
} , where

 

n 
k 

is the usage of hour k in day n. g k is the average of g n 
k 
, g k =

1 
N 

∑ N 
n =1 g 

n 
k 
, where g n 

k 
is calculated by g n 

k 
= (u n 

k 
− u n 

k −1 
) / u n (for u n 

0 

he usage of hour 0 is the usage of hour 24 of last day), where u n 

s the average usage of the 24 h in day n . 

efinition 3 (Usage variance) . Usage variance V i =
 v 1 , v 2 , · · · , v 24 ] , is a 24-dimension vector regarding customer

 . Each element v k reflects how much the usage in hour k varies in

ifferent days. v k is calculated in a usage sequence of customer i . 

In a N day length usage sequence { u n 
k 
} , v k is a standard vari-

nce, calculated by v k = 

√ 

1 
N 

∑ N 
n =1 (u n 

k 
− u k ) 

2 , where u k is the aver-

ge of usage in hour k of N days. 

efinition 4 (Energy consumption pattern) . Energy consumption

attern P i = { G i , V i , T } for customer i , is defined as a collection of

sage gradient G i , usage variant V i and time period T . It indicates

ow a customer consumes energy in a certain time period. 

.2. Framework design 

The broker model is designed to efficiently adapt to the dy-

amics in both the retail and wholesale markets. To achieve the

hree goals set in Section 2 , we design three modules in our bro-

er model, which are: 1) customer demand prediction module, 2)

holesale market module, and 3) retail market module. The three

odules incorporate to cope with market dynamics. The customer

emand prediction module predicts one-day-ahead customer de-

and, and outputs the predicted demand to the wholesale market

odule. The wholesale market module aims to obtain such amount

f energy with a low price in auctions. Then energy cost is calcu-

ated and passed to the retail market module. Based on the known

nergy cost, the retail market module makes decisions to attract

ustomers and gain profit. The framework of the proposed broker

odel is shown in Fig. 1 . 
Please cite this article as: X. Wang et al., A hybrid-learning based b

Knowledge-Based Systems (2016), http://dx.doi.org/10.1016/j.knosys.201
The three modules work as follows. 

Customer demand prediction module 

The customer demand prediction module makes use of the

data from two stages: the bootstrap stage and the dynamic

market stage. It first explores the retail market based on

bootstrap data, from which the energy consumption pattern

for each customer is calculated. According to the different

usage patterns, all the customers are clustered into clusters

through a hierarchical clustering process. For each customer

cluster, a usage predictor, which is learned from the boot-

strap data, is used to predict the future usage. In dynamic

market environments, the retail customers who subscribe

our tariffs are maintained, and then these customers are as-

signed to the corresponding customer clusters with respect

to their energy consumption patterns. Using the learned us-

age predictor for each cluster, our broker predicts the en-

ergy usage for each customer cluster, and accumulates all

the predicted usages to obtain total demand. 

Wholesale market module 

Given the predicted demand, the wholesale market mod-

ule employs a Markov Decision Process (MDP) to bid for

the predicted amount of energy in one-day-ahead auction in

the wholesale market. If the obtained energy amount is less

than the actual usage, the imbalance amount will be com-

pensated by the balancing market with a balancing price, 2 

which might be much higher than the market price. After

the auction, the cost of the obtained energy is calculated and

passed to the retail market module. 

Retail market module 

The retail market module calculates the profit based on

the given energy cost from the wholesale market module.

To compete with other brokers, this module uses three in-

dependent SARSA control processes to optimize the tariff

prices for three types of customers, which are prosumers,

general consumers (customers who require consistent power

supply, such as householders and office users) and interrupt-

ible consumers (customer with energy storage capacity, such
roker model for strategic power trading in smart grid markets, 
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as cold storage companies). The calculated profit is regarded

as the immediate reward in the SARSA process. 

From the perspective of an integrated system, the three mod-

ules are connected and can exchange information. The informa-

tion flow is highlighted in Fig. 1 . The customer demand prediction

module gathers customer usage data from retail market module

and outputs the predicted energy demand to the wholesale mar-

ket module. The wholesale market module tries to obtain the pre-

dicted amount of energy in the auction process, and passes the en-

ergy cost to the retail market. The retail market module uses the

cost of energy in reinforcement learning to calculate rewards and

makes decisions to different customers. The retail market module

also maintains the data of customers for the customer demand

prediction module. Through the communications and cooperations

of the three modules, the broker model can efficiently response

to the dynamics in markets, so as to make more profit and keep

supply-demand balance. In the following section, technical designs

of the three modules are introduced in details. 

4. The detail design of three modules 

This section introduces the three modules of the proposed bro-

ker model in details. 

4.1. The detail design of customer demand prediction module 

In this module, a data-driven method is proposed to predict

customer demand, which is critical for supply-demand balanc-

ing. The data-driven method hierarchically clusters the customers

based on their energy consumption patterns, and then different

prediction methods are introduced to predict the energy demand

for different customer clusters 24 h ahead. The procedure of cus-

tomer demand prediction is described in Algorithm 1 . 

Algorithm 1 A data-driven method for customer demand predic-

tion. 

Input: Bootstrap data B D ; 

Output: Predicted energy demand U t , t = 1 , · · · , 24 ; 

1: Initialize: U t = 0 , t = 1 , · · · , 24 ; 

2: Calculate customer energy consumption pattern P i for each

customer based on B D ; 

3: Cluster the customers into customer group C 1 and C 2 according

to customer usage variance V i ; 

4: Cluster the customers in C 1 and C 2 according to customer us-

age gradient G i , and M 1 and M 2 customer clusters are obtained,

respectively; 

5: Assign the subscribed customers into the M customer clusters; 

6: for each hour t ∈ [1 , 24] do 

7: for each customer cluster c i ∈ C 1 do 

8: Predict future usage U 

i 
t based on B D ; 

9: U t = U t + U 

i 
t ; 

10: end for 

11: for each customer cluster c i ∈ C 2 do 

12: Predict U 

i 
t with the regressor learned from B D ; 

13: U t = U t + U 

i 
t ; 

14: end for 

15: end for 

In Algorithm 1 , The broker model predicts next day energy de-

mand U t (t = 1 , · · · , 24) according to the input bootstrap data B D .

In Line 1, the energy demands to be predicted are initialized to 0.

Line 2 calculates the energy consumption pattern P i of each cus-

tomer. Then customers are clustered according to P i in Lines 3–4.

Line 3 clusters the customers into customer group C 1 and C 2 ac-

cording to customers’ usage variances, and Line 4 further clusters
Please cite this article as: X. Wang et al., A hybrid-learning based b

Knowledge-Based Systems (2016), http://dx.doi.org/10.1016/j.knosys.201
he customers in C 1 and C 2 according to customers’ usage gradi-

nts, respectively. The customers who subscribe our tariffs are as-

igned into the customer clusters in Line 5. In Lines 7–10, the en-

rgy demand for each customer cluster in customer group C 1 is

redicted and accumulated to the total energy demand. In Lines

1–14, similar routine is executed for each customer cluster in cus-

omer group C 2 . The details of clustering customers (Lines 3–4),

rediction method in C 1 (Line 8), and prediction method in C 2 

Line 12) are further introduced as follows. 

Clustering customers : According to pattern P i obtained in Line

, a hierarchical clustering method is used to cluster all the cus-

omers. There are two layers in our cluster method. For the first

ayer, customers are clustered according to usage variance V i , and

wo customer groups are obtained, i.e. C 1 and C 2 (see Line 3). For

he second layer, customers in C 1 and C 2 are further clustered ac-

ording to usage gradient G i , and M 1 and M 2 clusters are formed,

espectively (see Line 4). 

In the first layer, it is aimed to cluster all the customers into

wo groups, where one group of customers (C 1 ) shows stable

ourly usages in different days, and another group (C 2 ) has vari-

ble hourly usages. A hard threshold is used to cluster all the cus-

omers in the first layer. For customer i , if any element v k in his us-

ge variance V i , satisfies v i ≤ �1 , the customer is assigned into C 1 .

therwise, the customer will be assigned into C 2 . A strict thresh-

ld �1 is used to ensure that the hourly usage of customers in

 1 is stable. The cluster procedure in the first layer makes sense

or the reason that we can tailor two prediction methods for the

ustomers in C 1 and C 2 . As customers in C 1 show stable hourly us-

ges everyday, the future hourly usages can be predicted according

o the historical usage data. 

In contrast, the hourly usages of customers in C 2 change with

espect to other factors, thus supervised learning can be intro-

uced to learn predictors for those customers. In the second layer,

e aim to find customers sharing similar usage gradients. K -means

7] with a Euclidean distance criterion �2 is used to cluster the

ustomers in C 1 and C 2 , respectively. It is obvious that �2 affects

he numbers of final clusters, i.e. M 1 and M 2 . The parameter �2 

s further analyzed in the experiment section (see Subsection D

n Section 4 ). The reason of further clustering customers and the

eaning of clusters in the second layer are explained as follows.

imilar usage gradients indicate that customers in the same cluster

how similar responses to the outside factors, thus one predictor is

dequate for one customer cluster. 

Prediction method in C 1 : Customers in C 1 show stable hourly us-

ges in different days. For this kind of customers, we simply use

ccumulated historical data to predict their one-day-ahead usage.

or the M 1 customer clusters, M 1 × 24 predictors are constructed.

q. (2) is designed to predict one-day-ahead usage U mt of hour t

or cluster m . 

 

f 
mt = λU 

c 
mt + (1 − λ) U 

h 
mt (2)

n Eq. (2) , U 

f 
mt is the future one-day-ahead usage, U 

c 
mt is the current

sage, U 

h 
mt is the average of historical usage within a time window

f one week, and λ is a weight parameter. A large λ indicates a

trong emphasis on the current usage. Eq. (2) recurs while time

oes forward. 

Prediction method in C 2 : Customers in C 2 show variable hourly

sages, which might be affected by weather conditions and dy-

amics of the retail market. We first consider the influence of

eather conditions. A supervised learning method—LASSO regres-

ion [21] is used to estimate the future usage. The regressors are

earned from the historical usage data and weather data. M 2 ×
4 predictors are learned for each customer clusters in C 2 , respec-

ively. The predictor, which predicts the hourly usage in hour t for

luster m , is illustrated as follows. We extract the customer usage
roker model for strategic power trading in smart grid markets, 
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Algorithm 2 Algorithm for one energy auction in the wholesale 

market. 

Input: Historical auction data A t ;Predicted energy demand U t ; 

Output: Bidding bid(Q, p t ) ; 

1: Initialize: Q = U t ; 

2: if the length of A t < l then 

3: Set p t as the clear price p c of the former successful auction 

4: else 

5: Optimize p t using MDP [5] 

6: end if 

7: return bid(Q, p t ) ; 
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n hour t of all the customers in cluster m from bootstrap data B D .

 new data matrix B d is obtained, 

 d = 

⎛ 

⎜ ⎜ ⎝ 

u 11 u 12 · · · u 1 L 

u 21 u 22 · · · u 2 L 

. . . 
. . . 

. . . 
. . . 

u K1 u K2 · · · u KL 

⎞ 

⎟ ⎟ ⎠ 

, (3) 

here u kl is the hourly usage, and K is the total number of cus-

omers in this cluster, L is the total number of usage records of

our t contained in a line vector of bootstrap data B D . L can also

epresent the length of bootstrap data measured by days. Adding

p each line of B d , a vector U is obtained, U = [ u 1 , · · · , u L ] . In U ,

ach element u l is the l th day hourly usage of all customers in this

luster. u l fluctuates with respect to weather conditions. Following

he traditional procedure in data mining, we normalize u l by de-

ucting the mean value and then dividing the standard variance.

e use u ′ 
l 

to denote the obtained elements. ϕ 

l 
t is from weather

orecast of hour t of the l th day. ϕt is a 4-dimension real value

ector: ϕ t = [ T , W, D, C] , where T refers to temperature, W refers to

ind speed, D refers to wind direction, and C refers to cloudiness.

ach weather feature is also normalized as u l . A LASSO regressor

ses the following equation to estimate u ′ 
l 

given ϕ 

l 
t . 

˜ 
 

′ 
l 
= w t · ϕ 

l 
t + b (4)

n Eq. (4) , w t is the learned weight vector, and b is the bias item. A

ASSO regressor for time t is learned as the following process. The

eather feature and the corresponding normalized usage at time

 form a pair (ϕ 

l 
t → u ′ 

l 
) , which is regarded as a training sample.

 training samples are be obtained in the end. We employ LASSO

lgorithm [21] to minimize the following regularized cost function,

J(w t ) = 

1 

L 

L ∑ 

l=1 

(u 

′ 
l − ˜ u 

′ 
l 
) 2 + 

θ

2 L 
‖ w t ‖ 1 (5) 

n Eq. (5) , θ is a parameter to compromise the cost function and

he regularization term, and ‖ · ‖ 1 is the L 1 norm which can per-

orm feature selection. With the trained regressor, power usage u l 
an be predicted. Finally, all the predicted usages of M clusters are

ollected, and the estimated energy demand U t for hour t is ob-

ained. 

The performance of the predictors are monitored to adapt to

he dynamics in the retail market. If the predicted result differs

rom the actual usage to more than a certain criterion for a certain

ime period, the prediction module is updated with the historical

ata of subscribed customers. For customers in C 1 , the predictors

ill instantly update their values accordingly with Eq. (2) . For cus-

omers in C 2 , the average usage u is updated by Eq. (2) , and all the

redictors for C 2 are re-trained using Eq. (5) . In this manner, our

redictors can catch up with the dynamics in the retail market. 

.2. The detail design of wholesale market module 

In the wholesale market, our design aims to minimize the cost

f energy in one-day-ahead auctions. When energy demand U t for

our t is estimated, U t is immediately sent to the auction process.

idding occurs at the beginning of each hour, thus the broker has

4 opportunities to buy energy of amount U t . This is a sequential

idding problem. Vytelingum [24] studied continuous auctions in

008. Tesauro et al. [20] proposed a dynamic programming strat-

gy to optimize the bidding price. In our situation, the auction re-

eats every 24 h. Thus, it would be beneficial to employ an MDP

14] to model the bidding process. The bidding form is bid ( Q, p ),

here Q is the energy amount and p is the bidding price. The pro-

osed broker model uses Algorithm 2 for an energy auction pro-

ess in the wholesale market. 
Please cite this article as: X. Wang et al., A hybrid-learning based b

Knowledge-Based Systems (2016), http://dx.doi.org/10.1016/j.knosys.201
Algorithm 2 outputs the optimal bidding price according to the

istorical auction data and predicted energy demand. Line 1 sets

he bidding amount Q = U t . Lines 2–3 deal with the situation lack

f historical data, and the bidding price p t is set as the clear price

f the former successful auction p c . If enough historical data are

vailable, the MDP designed in TaxTac13 [22] is employed for auc-

ion in Lines 4–5. 

The MDP is defined as a five tuples S × A × T × R × T S as

ollows. 

• States: s ∈ {0, 1, ���, 24, success }, s 0 := 24 

• Actions: bidding price p t ∈ R + 

• Transition: a state s ∈ {1, ���, 24} is transited to the terminal

state success if a bid is fully or partially cleared. Otherwise, the

state s is transited to state s − 1 . The transition probability is

defined by P T (s, p t ) = m 

′ /m, where m 

′ is the total cleared en-

ergy amount when the clear price is less than the bidding price,

and m is the total cleared energy amount. m 

′ and m are accu-

mulated from the historical data of state s . 

• Reward: The reward for states s ∈ {1, ���, 24} is 0, and the re-

ward for state s = 0 is the balancing price p b (initially unknown,

accumulated from historical balancing data). For the state suc-

cess , the reward is the p t . 

• Terminal states: {0, success } 

The MDP can be solved by a back-sweep, from state 0 to state

4, with the following value function operator: 

 (s ) = 

{ 

p b i f s = 0 

min p t { P T × p t + 

(1 − P T ) × V (s − 1) } i f 1 ≤ s ≤ 24 

(6) 

At time t + 24 , the bought energy is consumed by customers.

ssuming that the actual customer usage is Q, S A is the cost spent

n the auction and S B is the cost spent for balancing amount (when

he obtained energy in auction is less than the actual customer us-

ge). The per kW energy cost W t is computed, W t = (S A + S B ) /Q .

he cost W t is sent to the retail market module for profit comput-

ng. 

.3. The detail design of retail market module 

In the dynamic retail market, there are two objectives to be

chieved in the competitions, which are: 1) to keep and attract

ore customers against other brokers; and 2) to make more profit.

here are mainly three types of customers, which are prosumers,

eneral consumers and interruptible consumers. Prosumers can

roduce energy, such as solar systems. Interruptible consumers can

olerate the energy interruptions for a certain period. General con-

umers require continuous energy supply. As the three types of

ustomers exhibit different attributes in consuming energy, it is

easonable to publish different tariffs for different types of cus-

omers. To optimize different tariffs, independent SARSA [2] pro-

esses are introduced for different customers. Each SARSA is used

o explore the dynamics of its corresponding customers and take
roker model for strategic power trading in smart grid markets, 
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Table 1 

Features and feature representations for state s . 

Feature Definition Representation 

Bias Constant 1.0 Plain 

ActionIndex Index of selected action Plain 

MarketBreadth Range from the lowest to highest rate RBF 

MarketShare Customer percentage of the market Plain 

Table 2 

Actions and action definitions. 

No. Action Definition 

a 1 Maintain keep the same price at time t + 1 as at time t 

a 2 Max publish a tariff with price p h + ε, where p h is 

the highest price, ε is a small value 

a 3 Min publish a tariff with price p l − ε, 

where p l is the lowest price 

a 4 Increase publish a tariff with price p c + δ, where 

p c is the current price, δ is the amount to increase price 

a 5 Decrease publish a tariff with price p c − δ

a 6 Average publish a tariff with an average market price p a 
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proper actions (optimizing energy price). We take one SARSA pro-

cess as an instance to detail our strategy in the retail market. This

process is illustrated in Algorithm 3 . 

Algorithm 3 SARSA control for a type of customer in the retail

market. 

1: Initialize: Q(s, a ) = 0 , a = a 6 (See Table 2 ); 

2: Repeat: 

3: Take action a , and observe the reward r and the next state s ′ ;
4: Calculate Q(s, a ) according to Equation 7 ; 

5: Choose the next action a ′ with ε- greedy policy based on

Q(s, a ) ; 

6: Update: a = a ′ , s = s ′ ; 

In Algorithm 3 , Line 1 initializes Q ( s, a ) and a . Lines 3–6 repeat

for the life time of the broker model. Line 3 calculates the imme-

diate reward r and next state feature s ′ after taking action a . Line

4 calculates Q ( s, a ) according to Eq. (7) , which will be introduced

later. Line 5 chooses next action using ε- greedy policy based on the

value of Q ( s, a ) in last step. In Line 6, state and action are updated.

The action-value function Q ( s, a ) is calculated by the following

equation, 

Q(s, a ) ← Q(s, a ) + α[ r + γ Q(s ′ , a ′ ) − Q(s, a )] , (7)

where r is the immediate reward, which is the profit when taken

action a to reach state s ′ , α is the learning rate, and γ is a discount

parameter. A smaller γ makes stronger emphasis on the current

reward. 

For state s , we refer to the work of Peters et al. [13] , which

has explored effective features in the retail market. With the se-

lected features (and the corresponding presentations), Peter et al.

has achieved competitive performance in the retail market, so we

inherit these features in this work. The selected features for s and

the corresponding feature representations are listed in Table 1 . Ac-

tions are designed to effectively response to the dynamic mar-

ket states [13] . Typical actions include increasing price, decreasing

price, maintaining current price etc. The full list of action a is il-

lustrated in Table 2 . 

As we are dealing with continuous control problems in the re-

tail market, function approximation [16] is employed. We use a lin-

ear function approximation represented in Eq. (8) . 

Q(s, a ) = θF (s, a ) T , (8)

where F ( s, a ) is a feature vector, and θ is continually updated by

the reinforcement learner. 
Please cite this article as: X. Wang et al., A hybrid-learning based b

Knowledge-Based Systems (2016), http://dx.doi.org/10.1016/j.knosys.201
In above, one SARSA control process has been illustrated. For

he three types of customers, three SARSA control processes, as

llustrated above, are used independently. The three independent

ARSA control processes work in parallel, taking the best strategy

or each type of customers. We will demonstrate this is a more ef-

ective way to compete with other brokers in the experiment sec-

ion. 

. Experiment 

The proposed broker model is evaluated by the following four

xperiments from different perspectives. Experiment 1 aims to

est the performance of the proposed broker model competing

ith other brokers in Smart Grid markets. Experiment 2 is to

valuate the on-line performance of the broker model on supply-

emand balance. Experiment 3 aims to evaluate the data-driven

ethod for demand prediction and reveal the interactions between

ustomer clustering and demand prediction. Experiment 4 is to

valuate the performance of the strategy that our model takes in

he retail market. For convenience, we call our implemented broker

odel GongBroker . We experiment GongBroker on the platform of

ower TAC, which simulates real-world Smart Grid markets. Power

AC started in 2012 and held every year, and has drawn wide at-

entions throughout the world. Dozens of brokers have participated

n the competition, making Power TAC an authentic platform to

valuate the performances of brokers. This is the reason for us to

valuate GongBroker on the platform of Power TAC. 

The game process of Power TAC is briefly described as follows.

ower TAC simulates the real-world 1 h with a 5 s timeslot, and

t simulates 60 days in one game. At the beginning of the com-

etition, each broker receives the bootstrap data with two weeks’

ength from the Power TAC server. The server also informs the

roperties of all consumers in the retail market. Besides, the server

ends the hourly weather data with a length of two weeks. In each

imeslot, brokers get public information including wholesale mar-

et clearing price and trading quantities, total energy production

nd consumption and weather forecasting data. In every 6 times-

ots, brokers get the public information on tariffs in the retail mar-

et, including new tariffs, re voked tariffs and superseding tariffs.

n each timeslot, each broker also gets the private information, in-

luding tariff transaction states of all his customers, the production

nd consumption of his current customers, the wholesale market

ransactions and the balancing transaction, and the current bank

alance. Basing on the market information, brokers can make deci-

ions on actions, such as bidding or asking in the wholesale mar-

et, and publishing or modifying tariffs in the retail market. When

 game ends, brokers are evaluated by the amount of profit and

he balance of supply and demand. 

The Power TAC game is utilized to design our experiments. In

ower TAC games, brokers compete in the markets to make more

rofits. This is a straight way to test the performances of broker

odels. Experiment 1 is taken in the game mode to compare the

erformance of GongBroker with others. Experiment 4 also makes

se of the game mode to evaluate GongBroker’s retail strategy. Be-

ides, there are sufficient logs of historical market data supplied

y Power TAC game server to analyze a broker model. The logs are

sed to analyze the performance of demand prediction module in

ongBroker in experiment 2 and 3. 

.1. Experiment settings 

Four experiments were setup to evaluate and analyze the pro-

osed broker model. 1. Evaluation of competition with other brokers :

ongBroker was put into the Power TAC environment to compete

ith other excellent brokers. This experiment was a direct evalua-

ion of the overall performance of GongBroker in Smart Grid mar-
roker model for strategic power trading in smart grid markets, 
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Table 3 

Common parameters for GongBroker in experiments. 

Module Parameter Value 

Customer demand prediction module clustering criterion �1 0 .15 

clustering criterion �2 0 .05 

weight parameter λ 0 .70 

Wholesale market module length of time l 5 

Retail market module learning rate α 0 .66 

discount parameter γ 0 .71 

ε in ε- greedy 0 .04 
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Fig. 2. Results of averaged profits of 5 brokers in Mode 1. 

Fig. 3. Results of averaged imbalance rates of 5 brokers in Mode 1. 

Fig. 4. Results of averaged profits and imbalance rates of 5 brokers in Mode 2. 
ets. 2. Evaluation of on-line supply-demand balance : A new broker

as implemented by replacing the customer demand prediction

odule by a baseline prediction method. Then we compared the

ew broker with GongBroker in Power TAC games. 3. Evaluation of

ff-line demand prediction : We let GongBroker dominate the Power

AC markets. Different parameters in customer demand prediction

odule were set to evaluate the proposed data-driven method ac-

ording to the logs of Power TAC server. 4. Evaluation of retail mar-

et control : A new broker was constructed by replacing the retail

arket module by only one SARSA control process. Then we com-

ared GongBroker with the new broker in Power TAC games. The

ommon parameters for the four experiments are set in Table 3 . 

In the customer demand prediction module, we set the cluster-

ng criterion �1 = 0 . 15 for the first layer clustering. For the sec-

nd layer clustering, we set the clustering criterion �2 = 0 . 05 . In

his setting, M 1 = 11 customer clusters were obtained in C 1 , and

 2 = 12 customer clusters were formed in C 2 . To predict the usage

mount for customers in C 1 , M 1 × 24 predictors were used, and

he weight parameter λ in Eq. (1) was set as 0.70. In the prediction

ethod for customers in C 2 , M 2 × 24 LASSO regressors were used.

he above settings in customer demand prediction module main-

ained for experiment 1, 2 and 4. In experiment 3, the parameter

2 was set to different value to evaluate the data-driven demand

rediction method. In the wholesale market module, the length l

as set to 5, which indicated if there was enough historical auc-

ion data. In the retail market module, the parameters for SARSA

ontrol was set as follows: α = 0 . 66 , and γ = 0 . 71 . These settings

ere referred to [13] . For the ε- greedy policy, ε was set as 0.04.

here are some random factors in the game, but the results are

enerally consistent. For a fair comparison, we run 10 games and

eport the average result. In the following subsections, the four ex-

eriments are reported and analyzed. 

.2. Experiment 1: evaluation of competition with other brokers 

In this experiment, we introduced other four brokers 3 to com-

ete with GongBroker in Power TAC games. The four brokers are

ample, LargeBroker, TacTex, and cwiBroker [1] . Sample broker was

rovided by the Power TAC, and the other three brokers were ex-

ellent brokers in former Power TAC competitions. We designed

wo different game modes to test the performance of GongBroker.

n Mode 1, GongBroker competed with each of the other four bro-

ers. Each competition was repeated 3 times to avoid the random

actors. The averaged profits and imbalance rates of each broker

re shown in Figs. 2 and 3 , respectively. The imbalance rate here

s defined as r = | U a − U p | /U a , where U a is the actual hourly usage

nd U p is the predicted usage. In Mode 2, all the brokers joined
3 There are some excellent broker models in [1] . We picked excellent brokers 

hose relevant literatures can be found, so that we could compare and analyze 

hem. TacTex [22] was the champion broker in Power TAC 2013. CwiBroker [10] got 

he second places in Power TAC 2013 and 2014. LargeBroker was an excellent broker 

n Power TAC 2012, and its literature is [13] . Sample broker was a base line version 

upplied by Power TAC. 

t  

n  

i

 

o  

1  

S  

Please cite this article as: X. Wang et al., A hybrid-learning based b

Knowledge-Based Systems (2016), http://dx.doi.org/10.1016/j.knosys.201
he game. Three repeated games were held to avoid the random-

ess. The average profits and imbalance rates of each broker are

llustrated in Fig. 4 . 

From Fig. 2 , we can see that in Mode 1, when competing with

ther brokers, GongBroker made a profit of 1.53, 5.72, 2.90 and

.23M€. The other four brokers, CwiBroker had a profit of 1.33M€,

ample broker made −0 . 22 M€, LargeBroker got 1.55M€, and TacTex
roker model for strategic power trading in smart grid markets, 
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Table 4 

Performance comparison of GongBroker and BrokerBP. 

Broker Profit (M€) Imbalance (%) 

GongBroker 2 .41 32 .8 

BrokerBP 0 .76 81 .4 

Fig. 5. Results of imbalance rate of GongBroker and BrokerBP in a non-competitive 

environment. 
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gained 1.24M€. GongBroker made a competitive profit with TacTex,

and gained larger profits than the other three brokers. In Fig. 3 , the

imbalance rates of GongBroker were 23.6%, 19.2%, 21.1%, 25.2%, re-

spectively, while the imbalance rates of CwiBroker, Sample, Large-

Broker and TacTex were 25.3%, 18.1%, 37.8% and 27.7%, respectively.

GongBroker showed less imbalance rate against other three bro-

kers but Sample. Sample broker kept a good imbalance rate but

it owned only a few customers after a short period of the game.

In summary, GongBroker shows the excellent performance in both

profit making and supply-demand balancing in games in Mode 1. 

In games in Mode 2, all the brokers participated in one game.

From Fig. 4 , we can see that GongBroker made a profit of 0.67M€

with an imbalance rate 23.9%. CwiBroker gained 0.59M€, and

its imbalance rate was 26.8%. Sample broker made a profit of

−0 . 27 M€, with an imbalance rate 19.3%. LargeBroker had a 0.45M€

profit, and a 39.6% imbalance rate. TacTex gained 0.63M€, and had

an imbalance rate of 25.6%. In Mode 2, GongBroker made the most

profit and kept a good balance of supply and demand. 

Combining the games in Mode 1 and Mode 2, we can safely

draw the conclusion that GongBroker gains advantages in both

profit making and supply-demand balance. The performance of

the five brokers can be ranked in the following order: GongBro-

ker, TacTex (the first two brokers show competitive performances),

CwiBroker, LargeBroker and Sample broker. Moreover, some inter-

esting empirical laws in Smart Grid markets can be drawn com-

bining Mode 1 and Mode 2. One is that the profit margin shrinks

when there are fierce competitions in markets. Games in Mode 2

exhibited stronger competitions than games in Mode 1. The total

market profit in Mode 2 is 2.07M€, less than the total profit in

any games in Mode 1. Taking a further analysis of the market prof-

its in games in Mode 1, we can see that profit margins become

smaller when the participated brokers are more competitive. For

instance, in the game between GongBroker and TaxTex, the total

market profit is 2.47M€, while the market profit is 5.50M€ in the

game between GongBroker and Sample. In a competitive environ-

ment, brokers publish their tariffs with low prices to attract cus-

tomers from time to time, thus the profit margin shrinks. Another

law is that the imbalance rate of supply demand increases when

the market environment is more competitive. In Mode 2, the im-

balance rates of all brokers slightly increased comparing to those

of in games in Mode 1. In games in Mode 1, GongBroker showed a

higher imbalance rate when competing with TacTex than the one

when competing with Sample broker. In order to attract customers

in the competitive retail market, brokers have to publish cheaper

tariffs timely. In this situation, customers may migrate frequently

among different brokers, which brings an extra difficulty in de-

mand prediction. That is the reason why imbalance rate increases

in a more competitive environment. 

5.3. Experiment 2: evaluation of supply-demand balance 

In this experiment, we evaluated the performance of GongBro-

ker on supply-demand balance by a comparison broker. From this

evaluation, the contribution of the customer demand prediction

module can be demonstrated. The comparison broker retained the

other modules of GongBroker, but replaced the customer demand

prediction module with a baseline prediction method. The base-

line prediction method was designed as follows. For each customer

i , the next-day usage u it (t = 1 , . . . , 24) was predicted the same as

the hourly usage in current. Then by adding up the results for all

the customers, the next-day energy demand U t , t = 1 , . . . , 24 was

obtained. The modified broker model was called Broker with Base-

line Predictions (BrokerBP). In the comparison experiment, the two

brokers participated the game. Three games were repeated. The av-

erage results are shown in Table 4 . 
Please cite this article as: X. Wang et al., A hybrid-learning based b

Knowledge-Based Systems (2016), http://dx.doi.org/10.1016/j.knosys.201
As shown in Table 4 , GongBroker made a profit of 2.41M€,

hile BrokerBP had a profit of 0.76M€. The imbalance rate of

ongBroker was 32.8%, while imbalance rate of BrokerBP was

1.4%. GongBroker beat BrokerBP in both profit and imbalance rate.

s GongBroker showed significant advantages over BrokerBP on

alancing supply and demand, the contribution of the customer

emand prediction module can be demonstrated. This result also

eveals that an effective demand prediction method is critical for

upply-demand balance. Moreover, though GongBroker and Bro-

erBP applied the same strategies to the retail market, GongBroker

ade much more profit than that of BrokerBP. The poor perfor-

ance of BrokerBP in supply-demand balance results in a smaller

rofit, which demonstrates that supply-demand balance is also a

ritical factor for profit making. 

To further analyze the customer demand prediction module, we

un GongBroker and BrokerBP in two independent games. In each

ame, there was only one broker, GongBroker or BrokerBP, in Smart

rid markets. In this game setting, there was relatively no compe-

ition. Fig. 5 illustrates the hourly imbalance rate of GongBroker

nd BrokerBP in a non-competitive environment. 

Fig. 5 shows that imbalance rates vary in 24 h. According to our

ommonsense, peak loads occur in 6–8 o’clock in the morning and

–8 o’clock in the evening. It can be seen that the imbalance rates

re higher in the peak hours than those of in other time periods.

his phenomenon may attribute to that customers’ behaviors are

ore chaotic in the peak hours. The total averaged imbalance rate

f GonBroker is 19.1% and that of BrokerBP is 48.4%. In the environ-

ent with no competitions, imbalance rates are less than those in

he competitive environment. This result reveals that strong com-

etition brings an extra difficulty in supply-demand balance. 

.4. Evaluation of off-line demand prediction 

This experiment evaluated the performance of the proposed

ata-driven method according to the off-line log data. The log

ata from the server recorded the actual hourly usages of all cus-
roker model for strategic power trading in smart grid markets, 
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Table 5 

The influence of �2 on the MAPE and the number of clusters. 

�2 Cluster no. in C 1 Cluster no. in C 2 MAPE(%) 

0 .05 11 12 9 .6 

0 .10 8 10 10 .7 

0 .15 6 6 14 .4 

Fig. 6. Results of prediction errors under different values of �2 . 
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Table 6 

Performance comparison of GongBroker and BrokerOSC. 

Broker Profit (M€) Imbalance (%) 

GongBroker 2 .43 27 .3 

BrokerOSC 1 .70 24 .7 
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m  
omers, which could be regarded as the ground-truth of customer

emand prediction. GongBroker was configured to dominate the

hole Smart Grid markets, thus there was no competition in the

arket. Excluding all the other varying factors, we could analyze

he robustness of the data-driven method. There are two parame-

ers in the hierarchical customer clustering process, i.e. �1 and �2 .

or �1 , it can be determined by constraining the error between

he prediction value and the ground-truth value. But for �2 , it can-

ot be determined with ease. �2 is a critical parameter which in-

uences the granular of final customer clusters and affects the fi-

al prediction precision. Therefore, we analyze �2 in details in the

ollowing. 

We set �2 to three different values: 0.05, 0.10, and 0.15. Appar-

ntly, the smaller value of �2 leads to the finer granular of cus-

omer clusters. Table 5 summarizes how �2 influences the num-

er of clusters and the MAPE of 24 h. The prediction precision is

easured by Mean Absolute Percentage Error (MAPE). Fig. 6 shows

ow MAPE of each hour changes with the value of �2 . 

In Fig. 6 , when �2 = 0 . 05 , the data-driven method shows the

est performance. The prediction error increases when �2 be-

omes larger. When �2 increases from 0.10 to 0.15, the MAPE of

ach hour increases more. When �2 ranges from 0.05 to 0.10, the

rediction precision is acceptable. Table 5 shows how �2 influ-

nces the MAPE of a day and the number of clusters. A larger

2 results in a less number of customer clusters, thus less pre-

ictors are required. However, large value of �2 causes the dec-

ination of prediction precision. On the contrary, a too small �2 

ay result in too many customer clusters and the required predic-

ors. The above analysis reveals that 0.05 ≤ �2 ≤ 0.10 is reasonable

o ensure the performance of the data-driven demand prediction

ethod. In practice, the value of �2 can be compromised between

he prediction precision and the number of predictors. 

Some profiles of customer clusters are shown when �2 = 0 . 05 .

ustomer clusters in C 1 show stable power usages, and such clus-

ers include cold storage company, householders with power stor-

ge and some office users. Cluster in C have unstable power us-
2 

Please cite this article as: X. Wang et al., A hybrid-learning based b

Knowledge-Based Systems (2016), http://dx.doi.org/10.1016/j.knosys.201
ges. These clusters are householders, office users and renewable

nergy producers. 

.5. Experiment 4: evaluation of retail market control 

This experiment evaluated the retail market control strategy of

ongBroker by comparing GongBroker with a newly constructed

roker. The comparison broker retained the other modules of

ongBroker, but replaced the retail market module with only one

ARSA control for all customers. The newly introduced SARSA con-

rol shares the same parameters with the three SARSA controls in

ongBroker. The modified GongBroker is called Broker with One

ARSA Control (BrokerOSC). We compared the performance of the

wo brokers in three games. The average results are shown in

able 6 . 

In Table 6 , GongBroker made a profit of 2.43M€, while Bro-

erOSC had a profit of 1.70M€. The imbalance rate of GongBro-

er was 27.3%, and the imbalance rate of BrokerOSC was 24.7%.

t can be seen that imbalance rates of the two brokers were very

lose, but GongBroker made 0.73M€ profit more than BrokerOSC.

herefore, the profit gap evidences that GongBroker uses better

trategies than BrokerBP in the retail market. These comparison

ames demonstrate that it is an effective method to use indepen-

ent SARSA controls for different types of customers in the retail

arket. 

. Discussions 

We populated competitive market environments to test the per-

ormance of the proposed broker model. Through the competitions

ith other successful brokers, we demonstrated the advantages of

he proposed broker model. The results of the games in two modes

how that our broker model can make a leading profit and keep a

ood supply demand balance in different competitive market envi-

onments. 

More importantly, through the experiments, two empirical laws

an be drawn from the competitive market environments. Law 1:

rofit margin shrinks when there are fierce competitions in mar-

ets. In the competitive retail market, brokers offer cheap tariffs

o attract customers, resulting in small profit margin. Law 2: the

mbalance rate of supply demand increases when the market envi-

onment is more competitive. In the competitive environment, as

rokers publish cheap tariffs from time to time, the customers mi-

rate frequently between brokers. The frequent migrations of cus-

omers bring extra difficulties in demand prediction, resulting in a

igh imbalance rate. 

A good supply-demand balance can enhance the energy us-

ng efficiency. A comparison experiment demonstrated the advan-

age of the proposed broker model in supply-demand balance. This

xperiment also verified the effectiveness of the proposed data-

riven method for demand prediction. Besides, the comparison ex-

eriment showed that supply-demand balance was also a critical

actor to gain a high profit for a broker. To further analyze the

ata-driven method for demand prediction, the key parameter �2 ,

hich affected the number of predictors and the prediction preci-

ion, was deeply analyzed. We have suggested a proper value range

or �2 in practice based on our evaluation results. 

It is vital for a broker to keep and attract customers in the retail

arket. Reinforcement learning can be applied to generate adap-
roker model for strategic power trading in smart grid markets, 
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tive tariff prices based on the changing market prices. Through

a comparison experiment, we demonstrated that using indepen-

dent SARSA controls for different customers was superior than us-

ing only one SARSA control for all customers. Independent SARSA

controls introduce additional computational cost, but this disad-

vantage can be easily compensated by parallel computing. 

7. Conclusions 

This paper proposed an intelligent broker model for strategic

power trading in Smart Grid markets. In proposed broker design,

the challenges that brokers face in Smart Grid markets were com-

prehensively considered, and an adaptive and systematic model

was constructed to surmount the challenges. The proposed bro-

ker model was tested and evaluated on the platform of Power

TAC. The evaluation results showed the advantages of our broker

against other excellent available brokers on both profit making and

supply-demand balance. In particular, four experiments were con-

ducted from different perspectives to explore the effectiveness of

our methods, used in each module in our broker design. The exper-

imental results demonstrated that our data-driven method for de-

mand prediction was effective in the complex and dynamic market

environment due to its consideration of various types of customers

and their behaviors. Moreover, the online reinforcement learning

method used in the retail market could help the broker to adapt to

the changing market environment. The experimental results have

also verified that learning various strategies for different types of

customers is more competitive than learning towards the whole

retail market. Through the experiments, two empirical laws have

been discovered i.e. Law 1: profit margin shrinks in a competitive

market environment and Law 2: the imbalance rate of supply de-

mand increases when a market environment is more competitive. 

Research on broker model for Smart Grid markets is an emerg-

ing field. We have made effort to build an autonomous broker

model that could take adaptive strategies to cope with the dynam-

ics in the complex Smart Grid environments. We wish that our at-

tempts might enlighten the autonomous broker designs in Smart

Grid markets, even though there are some issues worth further ex-

plorations. 
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